Skip to main content
Log in

Raman Shift of Surface Reaction and Plasma Induced Surface Damage by TNF3/BNF3 Reactive Ion Etching Process

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We examined the conditions for process optimization with the exposure of hot H2/NF3 mixture to a chemical oxide on the Si surface. Etching characteristics are described; then the etching mechanism is discussed based on the Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) observations that occurred during the etching. This research viewed the hydrogen/NFs based reactive clean process as an oxide, silicon clean process technology to enhance product reliability by improving light controlled etching, which is considered one of the factors that can weaken contact resistance when forming gates and below 10 nm pattern profiles. Furthermore, the existing properties that occur when applied to nanoscale sized holes and trenches with high aspect ratio were also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ieong, M., Doris, B., Kedzierski, J., Rim, K., Yang, M.: Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004)

    Article  CAS  Google Scholar 

  2. Wu, B., Kumar, A., Pamarthy, S.: High aspect ratio silicon etch: A review. J. Appl. Phys. 108, 9 (2010)

    Google Scholar 

  3. Neisser, M., Wurm, S.: ITRS lithography roadmap: 2015 challenges. Adv. Opt. Technol. 4, 235–240 (2015)

    Google Scholar 

  4. Takahagi, T., Nagai, I., Ishitani, A., Kuroda, H., Nagasawa, Y.: The formation of hydrogen passivated silicon single-crystal surfaces using ultraviolet cleaning and HF etching. J. Appl. Phys. 64, 3516–3521 (1988)

    Article  CAS  Google Scholar 

  5. Reinhardt, K., Kern, W.: Handbook of silicon wafer cleaning technology. William Andrew (2018)

  6. Kern, W.: The evolution of silicon wafer cleaning technology. J. Electrochem. Soc. 137, 1887 (1990)

    Article  CAS  Google Scholar 

  7. Chambers, S.A.: Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39, 105–180 (2000)

    Article  CAS  Google Scholar 

  8. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M., Ohwada, M.: Growth of native oxide on a silicon surface. J. Appl. Phys. 68, 1272–1281 (1990)

    Article  CAS  Google Scholar 

  9. Hanson, E.L., Schwartz, J., Nickel, B., Koch, N., Danisman, M.F.: Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J. Am. Chem. Soc. 125, 16074–16080 (2003)

    Article  CAS  Google Scholar 

  10. Muller, D.A., Sorsch, T., Moccio, S., Baumann, F., Evans-Lutterodt, K., Timp, G.: The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)

    Article  CAS  Google Scholar 

  11. Lee, Y.-I., Park, K.-H., Lee, J., Lee, C.-S., Yoo, H.J., Kim, C.-J., Yoon, Y.-S.: Dry release for surface micromachining with HF vapor-phase etching. J. Microelectromech. Syst. 6, 226–233 (1997)

    Article  CAS  Google Scholar 

  12. Quirk, M., Serda, J.: Semiconductor manufacturing technology. Prentice Hall Upper Saddle River (2001)

  13. Kikuchi, J., Iga, M., Ogawa, H., Fujimura, S., Yano, H.Y.H.: Native oxide removal on Si surfaces by NF3-added hydrogen and water vapor plasma downstream treatment. Jpn. J. Appl. Phys. 33, 2207 (1994)

    Article  CAS  Google Scholar 

  14. Hayashi, T.: Recent development of Si chemical dry etching technologies. J. Nanomed. Nanotechnol. 4, 1–6 (2013)

    Article  Google Scholar 

  15. Ogawa, H., Arai, T., Yanagisawa, M., Ichiki, T., Horiike, Y.: Dry cleaning technology for removal of silicon native oxide employing hot NH3/NF3 exposure. Jpn. J. Appl. Phys. 41, 5349 (2002)

    Article  CAS  Google Scholar 

  16. Lee, J., Mackenzie, K., Johnson, D., Sasserath, J., Pearton, S., Ren, F.: Low temperature silicon nitride and silicon dioxide film processing by inductively coupled plasma chemical vapor deposition. J. Electrochem. Soc. 147, 1481 (2000)

    Article  CAS  Google Scholar 

  17. Laermer, F., Schilp, A.: Method of anisotropically etching silicon. 1996. US Patent 5, (2019)

  18. Stiles, P.L., Dieringer, J.A., Shah, N.C., Van Duyne, R.P.: Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008)

    Article  CAS  Google Scholar 

  19. Anderson, M.S.: Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000)

    Article  CAS  Google Scholar 

  20. Kwon, S.H., Cui, Y., Choi, E., Kim, A., Chae, S.J., Pyo, S.G.: Chemical analysis of patterned mask cleaning in organic light emitting diode fabrication with Raman spectroscopy. Appl. Spectrosc. Rev. 50, 557–564 (2015)

    Article  CAS  Google Scholar 

  21. Jackson, S.T., Nuzzo, R.G.: Determining hybridization differences for amorphous carbon from the XPS C 1s envelope. Appl. Surf. Sci. 90, 195–203 (1995)

    Article  CAS  Google Scholar 

  22. Boehm, H.P.: Surface oxides on carbon and their analysis: a critical assessment. Carbon 40, 145–149 (2002)

    Article  CAS  Google Scholar 

  23. Choi, W.-S.: Interfacial study of metal oxide with source-drain electrodes and oxide semiconductor by XPS. Electron. Mater. Lett. 8, 87–90 (2012)

    Article  CAS  Google Scholar 

  24. Simonsen, M.E., Sønderby, C., Li, Z., Søgaard, E.G.: XPS and FT-IR investigation of silicate polymers. J. Mater. Sci. 44, 2079–2088 (2009)

    Article  CAS  Google Scholar 

  25. Bozso, F., Avouris, P.: Reaction of Si (100) with N H 3: Rate-Limiting Steps and Reactivity Enhancement via Electronic Excitation. Phys. Rev. Lett. 57, 1185 (1986)

    Article  CAS  Google Scholar 

  26. Lee, H.-Y., Wu, B.-K., Chern, M.-Y.: Study on the formation of zinc peroxide on zinc oxide with hydrogen peroxide treatment using x-ray photoelectron spectroscopy (XPS). Electron. Mater. Lett. 10, 51–55 (2014)

    Article  CAS  Google Scholar 

  27. Byun, C.W., Son, S.W., Lee, Y.W., Joo, S.K.: High performance low temperature polycrystalline Si thin-film transistors fabricated by silicide seed-induced lateral crystallization. Electron. Mater. Lett. 8, 251–258 (2012)

    Article  CAS  Google Scholar 

  28. Hemley, R., Mao, H., Bell, P., Mysen, B.: Raman spectroscopy of si o 2 glass at high pressure. Phys. Rev. Lett. 57, 747 (1986)

    Article  CAS  Google Scholar 

  29. Inokuma, T., Wakayama, Y., Muramoto, T., Aoki, R., Kurata, Y., Hasegawa, S.: Optical properties of Si clusters and Si nanocrystallites in high-temperature annealed SiO x films. J. Appl. Phys. 83, 2228–2234 (1998)

    Article  CAS  Google Scholar 

  30. Gregora, I., Champagnon, B., Halimaoui, A.: Raman investigation of light-emitting porous silicon layers: Estimate of characteristic crystallite dimensions. J. Appl. Phys. 75, 3034–3039 (1994)

    Article  CAS  Google Scholar 

  31. Aguiar, H., Serra, J., González, P., León, B.: Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J. Non·Cryst. Solids 355, 475–480 (2009)

    Article  CAS  Google Scholar 

  32. Bhopal, M.F., Lee, D.W., Lee, S.H.: Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate. Electron. Mater. Lett. 12, 651–659 (2016)

    Article  CAS  Google Scholar 

  33. Parker, J., Jr., Feldman, D., Ashkin, M.: Raman scattering by silicon and germanium. Phys. Rev. 155, 712 (1967)

    Article  CAS  Google Scholar 

  34. Zi, J., Büscher, H., Falter, C., Ludwig, W., Zhang, K., Xie, X.: Raman shifts in Si nanocrystals. Appl. Phys. Lett. 69, 200–202 (1996)

    Article  CAS  Google Scholar 

  35. Gouadec, G., Colomban, P.: Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007)

    Article  CAS  Google Scholar 

  36. Yang, M., Huang, D., Hao, P., Zhang, F., Hou, X., Wang, X.: Study of the Raman peak shift and the linewidth of light-emitting porous silicon. J. Appl. Phys. 75, 651–653 (1994)

    Article  CAS  Google Scholar 

  37. Kwon, S.H., Pyo, S.G.: Application of monitoring methodology in carbon complex contained solution using surface-enhanced Raman spectroscopy (SERS). Appl. Spectrosc. Rev. 51, 500–511 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Development Program-The Development of next-generation intelligent semiconductor technology) (20012609, Atomic Layer Etching Solution and System for Real Time Process Control) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). This research was also supported by the Chung-Ang University Research Scholarship Grants in 2020

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Chul Lee or Sung Gyu Pyo.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, H.J., Kim, J.S., Ahn, D.W. et al. Raman Shift of Surface Reaction and Plasma Induced Surface Damage by TNF3/BNF3 Reactive Ion Etching Process. Electron. Mater. Lett. 18, 321–329 (2022). https://doi.org/10.1007/s13391-022-00341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00341-z

Keywords

Navigation