Skip to main content
Log in

Dependence of the Resistance of the Negative e-Beam Resist HSQ Versus the Dose in the RIE and Wet Etching Processes

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

This article studied the resistance of the negative electron resist based on hydrogen-silsesquioxane (HSQ) depending on the dose of exposure in the process of Reactive Ion Etching (RIE). These studies showed the strong dependence of resistance on irradiation dose (in case of full development of the e-beam resist) even after annealing the resist 30 minutes 400°C in air. Selectivity up to 14 was obtained in the process of reactive ion etching of silicon in a mixture of gases SF6: C4F8. These results can be used to manufacturing of silicon nanoscale structures. It was shown that the resistance to wet etching in a 5% solution of hydrofluoric acid (HF) is also determined by irradiation dose. Additionally, taking into account the obtained results, silicon nanowires of width 10 nm with an aspect ratio of 1: 10 was manufactured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Junarsa, I., Stoykovich, M.P., Nealey, P., Ma, Y., Cerrina, F., and Solak, H.H., Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography, J. Vac. Technol. B, 2005, vol. 23, p.138.

    Article  Google Scholar 

  2. Matsui, S., Igaku, Y., Ishigaki, H., Fujita, J., Ishida, M., Ochiai, Y., Namatsu, H., and Komuro, M., Roomtemperature nanoimprint and nanotransfer printing using hydrogen silsequioxane, J. Vac. Technol. B, 2003, vol. 21, p.688.

    Article  Google Scholar 

  3. Nakamatsu, K., Watanabe, K., Tone, K., Katase, T., Hattori, W., Ochiai, Y., Matsuo, T., Sasago, M., Namatsu, H., Komuro, M., and Matsui, S., Bilayer resist method for room-temperature nanoimprint lithography, Jpn. J. Appl. Phys., 2004, vol. 43, pp. 4050–4053.

    Article  Google Scholar 

  4. Olynick, D.L., Cord, B., Schipotinin, A., Ogletree, D.F., and Schuck, P.J., Electron-beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in situ electron-beam-induced desorption, J. Vac. Technol. B, 2010, vol. 28, p.581.

    Article  Google Scholar 

  5. Namatsu, H., Yamaguchi, T., Nagase, M., Yamazaki, K., and Kurihara, K., Nanopatterning of a hydrogen silsesquioxane resist with reduced line width fluctuations, Microelectron. Eng., 1998, vols. 41–42, pp. 331–334.

    Article  Google Scholar 

  6. Yang, J.K.W. and Berggren, K.K., Using high-contrast salty development of hydrogen silsesquioxane for sub-10 nm half-pitch lithography, J. Vac. Technol. B, 2007, vol. 25, no. 6, p. 2025.

    Article  Google Scholar 

  7. Yang, J.K.W., Cord, B., Duan, H., Berggrena, K.K., Klingfus, J., Nam, S.-W., Kim, K.-B., and Rooks, M.J., Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography, J. Vac. Technol. B, 2009, vol. 27, no. 6, pp. 2622–2627.

    Article  Google Scholar 

  8. Maier, S.A., Plasmonics: Fundamentals and Applications, New York: Springer, 2007.

    Book  Google Scholar 

  9. Duan, H., Hu, H., Hui, H.K., Shen, Z., and Yang, J.K.W., Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas, Nanotechnology, 2013, vol. 24, p. 185301.

    Article  Google Scholar 

  10. Franklin, A.D., Luisier, M., Han, S.J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., and Haensch, W., Sub-10 nm carbon nanotube transistor, Nano Lett., 2012, vol. 12, no. 2, pp. 758–762.

    Article  Google Scholar 

  11. Li, T., Hu, W., and Zhu, D., Nanogap electrodes, Adv. Mater., 2010, vol. 22, pp. 286–300.

    Article  Google Scholar 

  12. Khabutdinov, R., Semenikhin, I., Davydov, F., Svintsov, D., Vyurkov, V., Fedichkin, L., Rudenko, K., Borzdov, A.V., and Borzdov, V.M., Low-dimensional transit-time diodes for terahertz generation, Proc. SPIE, 2016, vol. 10224, p. 102240M.

    Article  Google Scholar 

  13. Trellenkamp, St., Moers, J., van der Hart, A., Kordos, P., and Lüth, H., Patterning of 25-nm-wide silicon webs with an aspect ratio of 13, Microelectron. Eng., 2003, vols. 67–68, pp. 376–380.

    Article  Google Scholar 

  14. Larrieu, G. and Dubois, E., Reactive ion etching of a 20 nanometers tungsten gate using a SF6/N2 chemistry and hydrogen silsesquioxane hard mask resist, J. Vac. Technol. B, 2005, vol. 23, no. 5, pp. 2046–2050.

    Article  Google Scholar 

  15. Yang, J.K.W., Anant, V., and Berggren, K.K., Enhancing etch resistance of hydrogen silsesquioxane via postdevelop electron curing, J. Vac. Technol. B, 2006, vol. 24, no. 6, p. 3157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tatarintsev.

Additional information

Original Russian Text © A.V. Miakonkikh, N.A. Orlikovskiy, A.E. Rogozhin, A.A. Tatarintsev, K.V. Rudenko, 2018, published in Mikroelektronika, 2018, Vol. 47, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miakonkikh, A.V., Orlikovskiy, N.A., Rogozhin, A.E. et al. Dependence of the Resistance of the Negative e-Beam Resist HSQ Versus the Dose in the RIE and Wet Etching Processes. Russ Microelectron 47, 157–164 (2018). https://doi.org/10.1134/S1063739718030101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718030101

Navigation