Skip to main content
Log in

Study on the formation of zinc peroxide on zinc oxide with hydrogen peroxide treatment using x-ray photoelectron spectroscopy (XPS)

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In a previous study, we found that zinc oxide (ZnO) samples under different hydrogen peroxide (H2O2) treatment durations show the ability to dramatically rectify a diode’s behavior. In this study, the H2O2 mechanism is examined by grazing incidence x-ray diffraction (GIXRD) and x-ray photoelectron spectroscopy (XPS) analyses. In GIXRD, a diffraction peak (111) from the zinc peroxide (ZnO2) was observed for the films grown at low temperatures. The XPS depth profiles of the core O1s clearly indicated oxidation, and an interfacial ZnO2 layer covered the ZnO surface via the H2O2 treatment. The Schottky barrier heights of the treated and untreated samples were illustrated using energy band diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Neville and C. A. Mead, J. Appl. Phys. 41, 3795 (1970).

    Article  Google Scholar 

  2. A. Y. Polyakov, N. B. Smirnov, E. A. Kozhukhova, V. I. Vdovin, K. Ip, Y. W. Heo, D. P. Norton, and S. J. Pearton, Appl. Phys. Lett. 83, 1575 (2003).

    Article  Google Scholar 

  3. H. Sheng, S. Muthukumar, N. W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132 (2002).

    Article  Google Scholar 

  4. R. Schifano, E. V. Monakhov, U. Grossner, and B. G. Svensson, Appl. Phys. Lett. 91, 193507 (2007).

    Article  Google Scholar 

  5. K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 2835 (2004).

    Article  Google Scholar 

  6. S. J. Young, L.-W. Ji, S. J. Chang, Y. P. Chen, and S.-M. Peng, Semicond. Sci. Technol. 23, 085016 (2008).

    Article  Google Scholar 

  7. M. W. Allen and S. M. Durbin, Appl. Phys. Lett. 92, 122110 (2008).

    Article  Google Scholar 

  8. M. C. Newton, S. Firth, and P. A. Warburton, Appl. Phys. Lett. 89, 072104 (2006).

    Article  Google Scholar 

  9. R. Y. Gunji, M. Nakano, A. Tsukazaki, A. Ohmoto, T. Fukumura, and M. Kawasaki, Appl. Phys. Lett. 93, 012104 (2008).

    Article  Google Scholar 

  10. S. Chatman, B. J. Ryan, and K. M. Poduska, Appl. Phys. Lett. 92, 012103 (2008).

    Article  Google Scholar 

  11. M. W Allen, S. M. Durbin, and J. B. Metson, Appl. Phys. Lett. 91, 053512 (2007).

    Article  Google Scholar 

  12. M. W. Allen, R. J. Mendelsberg, R. J. Reeves, and S. M. Durbin, Appl. Phys. Lett. 94, 103508 (2009).

    Article  Google Scholar 

  13. S.-H. Kim, H.-K. Kim, and T.-Y. Seong, Appl. Phys. Lett. 86, 022101 (2005).

    Article  Google Scholar 

  14. S.-H. Kim, H.-K. Kim, and T.-Y. Seong, Appl. Phys. Lett. 86, 112101 (2005).

    Article  Google Scholar 

  15. S. Lee and D. Y. Kim, J. Appl. Phys. 104, 093515 (2008).

    Article  Google Scholar 

  16. S. Lee, Y. Shon, D. Y. Kim, T. W. Kang, and C. S. Yoon, Appl. Phys. Lett. 96, 042115 (2010).

    Article  Google Scholar 

  17. S. Lee, Y. Lee, D. Y. Kim, and T. W. Kang, Appl. Phys. Lett. 96, 142102 (2010).

    Article  Google Scholar 

  18. R. Schifano, E. V. Monakhov, B. G. Svensson, and S. Diplas, Appl. Phys. Lett. 94, 132101 (2009).

    Article  Google Scholar 

  19. C.-H. Tsai, C.-I. Hung, C.-F. Yang, and M.-P. Houng, Appl. Surf. Sci. 257, 610 (2010).

    Article  Google Scholar 

  20. A. Nakamura and J. Temmyo, J. Appl. Phys. 109, 093517 (2011).

    Article  Google Scholar 

  21. Vl. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, Appl. Phys. Lett. 98, 082104 (2011).

    Article  Google Scholar 

  22. H.-Y. Lee, C.-T. Su, B.-K. Wu, W.-L. Xu, Y.-J. Lin, and M.-Y. Chern, Jpn. J. Appl. Phys. 50, 088004 (2011).

    Google Scholar 

  23. S. Lindroos and M. Leskela, Int. J. Inorg. Mater. 2, 197 (2000).

    Article  Google Scholar 

  24. K. G. Saw, K. Ibrahim, Y. T. Lim, and M. K. Chai, Thin Solid Films 515, 2879 (2007).

    Article  Google Scholar 

  25. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p. 45, Perkin-Elmer, Eden Prairie, MN, USA (1995).

    Google Scholar 

  26. Y. S. Rim, D. L. Kim, W. H. Jeong, and H. J. Kim, Appl. Phys. Lett. 97, 233502 (2010).

    Article  Google Scholar 

  27. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices 3rd ed., p. 141, John Wiley & Sons, Hoboken, NJ, USA (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Yau Chern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HY., Wu, BK. & Chern, MY. Study on the formation of zinc peroxide on zinc oxide with hydrogen peroxide treatment using x-ray photoelectron spectroscopy (XPS). Electron. Mater. Lett. 10, 51–55 (2014). https://doi.org/10.1007/s13391-013-2244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-2244-x

Keywords

Navigation