Skip to main content
Log in

Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanorods were grown on porous silicon (PS) using hydrothermal synthesis without a metal catalyst or a seed layer. Scanning electron microscopy, x-ray diffraction, and temperature-dependent photoluminescence (PL) were carried out to investigate the structural and optical properties of the ZnO-PS sample. Most of the nanorods had an average diameter about of 120 nm and an average length of 5 µm, and were assembled into flower-like clusters where several nanorods were joined at a central point. In some cases, ZnO nanorods were merged in parallel bundles. The ZnO nanorods exhibited an overall compressive residual stress. The Zn-O bond length was 1.953 Å. ZnO-PS exhibited one PL peak in the ultraviolet (UV) range, and two peaks in the visible range. The UV and green emission peak were generated from the ZnO nanorods, while the red emission peak was attributed to the PS. The fitting parameters for Varshni’s empirical equation were α = 8 × 10−4 eV/K, β = 186 K, and E g (0) = 3.375 eV, and the thermal activation energy was about 32 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Chang, R. W. Chuang, S. J. Chang, Y. Z. Chiou, and C. Y. Lu, Thin Solid Films 517, 5054 (2009).

    Article  Google Scholar 

  2. S. Kim, M. S. Kim, K. G. Yim, G. Nam, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, J. Korean Phys. Soc. 60, 1599 (2012).

    Article  Google Scholar 

  3. Z. Zhang, S. J. Wang, T. Yu, and T. Wu, J. Phys. Chem. C 111, 17500 (2007).

    Article  Google Scholar 

  4. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003).

    Article  Google Scholar 

  5. Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Appl. Phys. Lett. 83, 1689 (2003).

    Article  Google Scholar 

  6. W. I. Park, G.-C. Yi, M. Kim, and S. J. Ennycook, Adv. Mater. 14, 1841 (2002).

    Article  Google Scholar 

  7. T.-H. Fang and S.-H. Kang, J. Phys. D: Appl. Phys. 41, 245303 (2008).

    Article  Google Scholar 

  8. S. Kim, M. S. Kim, G. Nam, and J.-Y. Leem, Electron. Mater. Lett. 8, 445 (2012).

    Article  Google Scholar 

  9. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, Adv. Mater. 21, 4087 (2009).

    Article  Google Scholar 

  10. Y.-S. Choi, J.-W. Kang, D.-K. Hwang, and S.-J. Park, IEEE Trans. on Electron. Devices 57, 26 (2010).

    Article  Google Scholar 

  11. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  Google Scholar 

  12. X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004).

    Article  Google Scholar 

  13. F.S.-S. Chien, C.-R. Wang, Y.-L. Chan, and H.-L. Lin, Sens. Actuators B 144, 120 (2010).

    Article  Google Scholar 

  14. S. Oh, M. Jung, J. Koo, Y. Cho, S. Choi, S. Yi, G. Kil, and J. Chang, Physica E 42, 2285 (2010).

    Article  Google Scholar 

  15. S. Kim, G. Nam, H. Park, H. Yoon, S.-H. Lee, J. S. Kim, J. S. Kim, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, Bull. Korean Chem. Soc. 34, 1205 (2013).

    Article  Google Scholar 

  16. D. Y. Kim, S.-O. Kim, M. S. Kim, K. G. Yim, S. Kim, G. Nam, D.-Y. Lee, and J.-Y. Leem, J. Korean Phys. Soc. 60, 94 (2012).

    Article  Google Scholar 

  17. M. Y. Cho, M. S. Kim, H. Y. Choi, K. G. Yim, and J.-Y. Leem, Bull. Korean Chem. Soc. 32, 880 (2011).

    Article  Google Scholar 

  18. K. Yu, Y. Zhang, L. Luo, W. Wang, Z. Zhu, J. Wang, Y. Cui, H. Ma, and W. Lu, Appl. Phys. A 79, 443 (2004).

    Article  Google Scholar 

  19. C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002).

    Article  Google Scholar 

  20. P. X. Gao, Y. Ding, and Z. L. Wang, Nano Lett. 3, 1315 (2003).

    Article  Google Scholar 

  21. S. Kim, G. Nam, K. G. Yim, J. Lee, Y. Kim, and J.-Y. Leem, Electron. Mater. Lett. 9, 293 (2013).

    Article  Google Scholar 

  22. Y. Tao, M. Fu, A. Zhao, D. He, and Y. Wang, J. Alloy. Compd. 489, 99 (2010).

    Article  Google Scholar 

  23. M. S. Kim, K. G. Yim, D. Y. Kim, S. Kim, G. Nam, D.-Y. Lee, S.-O. Kim, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, Electron. Mater. Lett. 8, 75 (2012).

    Article  Google Scholar 

  24. Z. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, Nat. Mater. 2, 821 (2003).

    Article  Google Scholar 

  25. Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, and Y. Qian, Cryst. Growth Des. 5, 147 (2005).

    Article  Google Scholar 

  26. L. Wu, Y. Wu, W. Lu, H. Wei, and Y. Shi, Appl. Surf. Sci. 252, 1436 (2005).

    Article  Google Scholar 

  27. M. S. Kim, K. G. Yim, S. Kim, G. Nam, D.-Y. Lee, J. S. Kim, J. S. Kim, and J.-Y. Leem, Acta Phys. Pol. A 121, 217 (2012).

    Google Scholar 

  28. W.-J. Li, E.-W. Shi, W.-Z. Zhong, and Z.-W. Yin, J. Cryst. Growth 203, 186 (1999).

    Article  Google Scholar 

  29. J.-S. Hur, S. Jang, D. Kim, D. Byun, and C.-S. Son, J. Korean Phys. Soc. 53, 3033 (2008).

    Article  Google Scholar 

  30. J. Y. Kim, S.-H. Ko Park, H. Y. Jeong, C. Park, S.-Y. Choi, J.-Y. Choi, S.-H. Han, and T. H. Yoon, Bull. Korean Chem. Soc. 29, 727 (2008).

    Article  Google Scholar 

  31. P. W. Tasker, J. Phys. C: Solid State Phys. 12, 4977 (1979).

    Article  Google Scholar 

  32. G. Nam, S. Kim, M. S. Kim, K. G. Yim, D. Y. Kim, S.-O. Kim, and J.-Y. Leem, J. Korean Phys. Soc. 59, 129 (2011).

    Article  Google Scholar 

  33. J.-W. Jeon, M. Kim, L.-W. Jang, J. L. Hoffman, N. S. Kim, and I.-H. Lee, Electron. Mater. Lett. 8, 27 (2012).

    Article  Google Scholar 

  34. S. M. Jeon, M. S. Kim, M. Y. Cho, H. Y. Choi, K. G. Yim, G. S. Kim, H. G. Kim, D.-Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J.-Y. Leem, J. Korean Phys. Soc. 57, 1477 (2010).

    Article  Google Scholar 

  35. H. Cai, H. Shen, Y. Yin, L. Lu, J. Shen, and Z. Tang, J. Phys. Chem. Solids 70, 967 (2009).

    Article  Google Scholar 

  36. P. Scherrer and N. G. W. Goettingen, Math. Phys. K1, 98 (1918).

    Google Scholar 

  37. M. S. Kim, K. G. Yim, S. Kim, G. Nam, D.-Y. Lee, J. S. Kim, J. S. Kim, and J.-Y. Leem, J. Korean Phys. Soc. 59, 2354 (2011).

    Article  Google Scholar 

  38. B. Guo, Z. R. Qiu, and K. S. Wong, Appl. Phys. Lett. 82, 2290 (2003).

    Article  Google Scholar 

  39. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004).

    Article  Google Scholar 

  40. F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, Phys. Rev. B 72, 085206 (2005).

    Article  Google Scholar 

  41. M. Y. Cho, M. S. Kim, H. Y. Choi, S. M. Jeon, G. S. Kim, D. Y. Kim, K. G. Yim, D.-Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J.-Y. Leem, J. Korean Phys. Soc. 56, 1833 (2010).

    Article  Google Scholar 

  42. J. P. Proot, C. Delerue, and G. Allan, Appl. Phys. Lett. 61, 1948 (1992).

    Article  Google Scholar 

  43. M. S. Kim, G. Nam, S. Kim, D. Y. Kim, D.-Y. Lee, J. S. Kim, S.-O. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, J. Lumin. 132, 2581 (2012).

    Article  Google Scholar 

  44. L. Wang and N. C. Giles, J. Appl. Phys. 94, 973 (2003).

    Article  Google Scholar 

  45. D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, J. Appl. Phys. 93, 3214 (2003).

    Article  Google Scholar 

  46. M. Y. Cho, M. S. Kim, S. Kim, D. Y. Kim, S.-O. Kim, G. Nam, and J.-Y. Leem, J. Korean Phys. Soc. 61, 102 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Leem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, M.S., Park, H. et al. Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon. Electron. Mater. Lett. 10, 565–571 (2014). https://doi.org/10.1007/s13391-013-3139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3139-6

Keywords

Navigation