Skip to main content
Log in

Forest of ultra thin silicon nanowires: realization of temperature and catalyst size

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One of the most important progresses in the field of nano science and technology was partially due to the high surface to volume ratio of quasi one-dimensional silicon nanowires (SiNWs) with various applications in biological and chemical sensors, optoelectronic devices, catalysis, Li ion batteries and solar cells. In this study we have prepared a uniform forest of ultrathin SiNWs using plasma enhanced chemical vapor deposition method. Uniformly distributed SiNWs were obtained based on an Au layer containing gold nano-seeds with the average diameters ranging from 10 to 40 nm at various temperatures. The physicochemical properties of SiNWs were characterized using field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and high-resolution transmission electron microscopy. Microscopic assessments revealed that crystalline-amorphous core–shell SiNWs with different diameters and lengths ranging from 35 to 130 nm and ~ 0.7 to 1.9 µm are formed during the vapor–liquid–solid mechanism, respectively. The XRD spectra show that the main lattice directions are Si(111), Si(220) and Si(311) which confirm crystalline structure of synthesized NWs. The PL spectrum reveal two distinct emission peaks at wavelengths of about 480 nm (blue range) and 690 nm (red range) as sharp and a broad peak, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449‎‎, 885‎ (2007)

    Article  Google Scholar 

  2. K.E. Byun, K. Heo, S. Shim, H.J. Choi, S. Hong, Small 5, 2659 (2009)‎

    Article  CAS  Google Scholar 

  3. S. Ameen, D.R. Park, H.S. Shin, J. Mater. Sci. 27, 10460 (2016)‎

    CAS  Google Scholar 

  4. ‎ A. Marcue, C. Grigoriu, C.P. Lungu, T. Yanagida, T. Kawai, Physica E 44, 1071 (2012)‎

    Article  Google Scholar 

  5. V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz, F. Falk, S.H. Christiansen, Nano ‎Lett. 9, 1549 (2009)‎

    Article  CAS  Google Scholar 

  6. Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, H. Haick, ACS Nano 6, ‎‎335 (2012)‎

    Article  Google Scholar 

  7. ‎ ‏P. Pandey, M.R. Parra, F.Z. Haque, R. Kurchania, J. Mater. Sci. 28, 1537 (2017)‎

    CAS  Google Scholar 

  8. D.H. Shin, S. Kim, S.H. Hong, S.H. Choi, K.J. Kim, Nanotechnology 21, 045604 (2009)‎

    Article  Google Scholar 

  9. H. Hamidinezhad, Y. Wahab, Z. Othaman, A.K. Ismail, Plasmonics 6, 791 (2011)‎

    Article  CAS  Google Scholar 

  10. D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, Y.H. Zou, W. Qian, G.‎C. Xiong, H.T. Zhou, S.Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)‎

    Article  CAS  Google Scholar 

  11. A.M. ‎Morales, C.M. Lieber, Science 279, 208‎ (1998)

    Article  Google Scholar 

  12. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78, ‎‎2214(2001)‎

    Article  Google Scholar 

  13. H. Namatsu, S. Horiguchi, M. Nagase, K. Kurihara, J. Vac. Sci. Technol. B 15, 1688‎ (1997)

    Article  CAS  Google Scholar 

  14. J.L. Liu, S.J. Cai, G.L. Jin, S.G. Thomas, K.L. Wang, J. Cryst. Growth 200, 106 (1999)‎

    Article  CAS  Google Scholar 

  15. F. Iacopi, P.M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. ‎Richard, C. Detavernier, H. Griffiths, Nanotechnology 18, 505307‎ (2007)

    Article  Google Scholar 

  16. D.Z. Hu, D.T. Zhao, W.R. Jiang, B. Shi, Y.L. Fan, Z.M. Jiang, J. Cryst. Growth 236‎‎, 557‎ (2002)

    Article  Google Scholar 

  17. G. Gadea, A. Morata, J.D. Santos, D. Davila, C. Calaza, M. Salleras, L. Fonseca, A. ‎Tarancon, Nanotechnology 26, 195302 (2015)‎

    Article  CAS  Google Scholar 

  18. H. Hamidinezhad, A.M. Zulkurnain, Y. Wahab, Appl. Phys. A 108, 739 (2012)‎

    Article  CAS  Google Scholar 

  19. ‎ J. Qi, J.M. White, A.M. Belcher, Y. Masumoto, Chem. Phys. Lett. 372, 763 (2003)‎

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Hamidinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidinezhad, H., Ashkarran, A.A. Forest of ultra thin silicon nanowires: realization of temperature and catalyst size. J Mater Sci: Mater Electron 29, 5373–5379 (2018). https://doi.org/10.1007/s10854-017-8503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8503-0

Navigation