Skip to main content
Log in

Morphological, Optical, and Crystalline Analysis of ZnTiO3 Nanostructures Deposited on Porous Silicon Substrate

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Zinc titanate (ZnTiO3) was grown on silicon and porous silicon. ZnTiO3 layers were prepared by sol-gel method. Porous silicon was fabricated by electrochemical etching of silicon in HF solution. The effect of substrate porosity on morphology, structure and otpical properties of ZnTiO3 nanostructures has been studied. Theses properties were investigated using XRD, Ultraviolet–Visible spectroscopy, and HRTEM. Some important parameters (absorption, reflectivity (R (%) and grain size) were studied. It was found that the Structural, morphology and optical properties of ZnTiO3 layers are dependent strongly on the type of substrates. The crystalline size decreased for ZnTiO3 layers deposited on PS substrate. The average grain size is about 80 nm for ZnTiO3 grown on porous silicon. The surface morphology of films was also found to be uniform and homogeneous. ZnTiO3-PS shows enhancing photon absorption compared to ZnTiO3-Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Fatima H, Azhar MR, Khiadani M, Zhong Y, Wang W, Su C, Shao Z (2022) Prussian blue-conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis. Materials Today Energy 23:100895. https://doi.org/10.1016/j.mtener.2021.100895

    Article  CAS  Google Scholar 

  2. Özdemir AO, Caglar B, Çubuk O, Coldur F, Kuzucu M, Guner EK, Doğan B, Caglar S, Özdokur KV (2022) Facile synthesis of TiO2-coated cotton fabric and its versatile applications in photocatalysis, pH sensor and antibacterial activities. Mater Chem Phys 287:126342. https://doi.org/10.1016/j.matchemphys.2022.126342

    Article  CAS  Google Scholar 

  3. Li Y, Min F, Wang R, Siwei W, Tan X (2022) Efficient removal TC by Zn@SnO2/PI via the synergy of adsorption and photocatalysis under visible light. Chem Eng J 444:136567. https://doi.org/10.1016/j.cej.2022.136567

    Article  CAS  Google Scholar 

  4. Dhatarwal P, Sengwa RJ (2021) Poly(vinyl pyrrolidone) matrix and SiO2, Al2O3, SnO2, ZnO, and TiO2 nanofillers comprise biodegradable nanocomposites of controllable optical properties for optoelectronic application. Optik 241:167215. https://doi.org/10.1016/j.ijleo.2021.167215

    Article  CAS  Google Scholar 

  5. Fan W, Qiao Q, Bahrami B, Chen K, Pathak R, Mabrouk S, Tong Y, Li X, Zhang T, Jian R (2018) Comparison of performance and optoelectronic processes in ZnO and TiO2 nanorod array-based hybrid solar cells. Appl Surf Sci 456:124. https://doi.org/10.1016/j.apsusc.2018.06.097

    Article  CAS  Google Scholar 

  6. Senthilkumar P, Raja S, Ramesh Babu R, Vasuki G (2022) Enhanced electrical and optoelectronic properties of W doped SnO2 thin films. Opt Mater 126:112234. https://doi.org/10.1016/j.optmat.2022.112234

    Article  CAS  Google Scholar 

  7. Bakour A, Saadoune A, Bouchama I, Dhiabi F, Boudour S, Saeed MA (2022) Effect and optimization of ZnO layer on the performance of GaInP/GaAs tandem solar cell. Micro Nanostructures 168:207294. https://doi.org/10.1016/j.micrna.2022.207294

    Article  CAS  Google Scholar 

  8. Al-She'irey AY, Balouch A, Mawarnis ER, Roza L, Rahman MYA, Abdullah, Mahar AM (2022) Effect of ZnO seed layer annealing temperature on the growth of ZnO nanorods and its catalytic application. Opt Mater 131:112652. https://doi.org/10.1016/j.optmat.2022.112652

    Article  CAS  Google Scholar 

  9. Lu T s, Lv J, Wang C (2022) Hydrogenation process enhances radiation-stability of ZnO, Ga2O3 and TiO2. J Alloys Compd 897:163135. https://doi.org/10.1016/j.jallcom.2021.163135

    Article  CAS  Google Scholar 

  10. Enebe GC, Lukong VT, Mouchou RT, Ukoba KO, Jen T-C (2022) Optimizing nanostructured TiO2/Cu2O pn heterojunction solar cells using SCAPS for fourth industrial revolution. Mater Today: Proc 62:S145. https://doi.org/10.1016/j.matpr.2022.03.485

    Article  CAS  Google Scholar 

  11. Tian X, Cui X, Lai T, Ren J, Yang Z, Xiao M, Wang B, Xiao X, Wang Y (2021) Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: a review. Nano Mater Sci 3:390. https://doi.org/10.1016/j.nanoms.2021.05.011

    Article  CAS  Google Scholar 

  12. Koley S (2021) Engineering Si doping in anatase and rutile TiO2 with oxygen vacancy for efficient optical application. Phys B Condens Matter 602:412502. https://doi.org/10.1016/j.physb.2020.412502

    Article  CAS  Google Scholar 

  13. Kumar RR, Kumar KU, Haranath D (2022) Synthesis, characterization, and applications of ZnO–TiO2 nanocomposites. Nanoscale Compound Semiconductors and their Optoelectronics Applications Woodhead Publishing Series in Electronic and Optical Materials 271. https://doi.org/10.1016/B978-0-12-824062-5.00011-7

  14. Jiang Q, Han Z, Qian Y, Yuan Y, Ren Y, Wang M, Cheng Z (2022) Enhanced visible-light photocatalytic performance of ZIF-8-derived ZnO/TiO2 nano-burst-tube by solvothermal system adjustment. J Water Process Eng 47:102768. https://doi.org/10.1016/j.jwpe.2022.102768

    Article  Google Scholar 

  15. Thi TDN, Nguyen LH, Nguyen XH, Phung HV, Vinh THT, Van Viet P, Van Thai N, Le HN, Pham DT, Van HT, Thi LHT, Thi TDP, Le Minh T, Quang HHP, Hoang Phuong Nguyen V, Duc TT, Nguyen HM (2022) Enhanced heterogeneous photocatalytic perozone degradation of amoxicillin by ZnO modified TiO2 nanocomposites under visible light irradiation. Mater Sci Semicond Process 142:106456. https://doi.org/10.1016/j.mssp.2022.106456

    Article  CAS  Google Scholar 

  16. Heng Z, Wan Y, Xia C (2022) Calcium stabilized La0.6Sr0.4Fe0.8Mn0.2O3-δ perovskite as ceramic fuel electrode for solid oxide cell. J Power Sources 537:231535. https://doi.org/10.1016/j.jpowsour.2022.231535

    Article  CAS  Google Scholar 

  17. Flores-Lasluisa JX, Huerta F, Cazorla-Amorós D, Morallón E (2022) Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. Environ Res 214:113731. https://doi.org/10.1016/j.envres.2022.113731

    Article  CAS  PubMed  Google Scholar 

  18. Syue Y-K, Hsu K-C, Fang T-H, Lee C-I, Shih C-J (2022) Characteristics and gas sensor applications of ZnO-perovskite heterostructure. Ceram Int 48:12585. https://doi.org/10.1016/j.ceramint.2022.01.126

    Article  CAS  Google Scholar 

  19. Ashiq MGB, Mahmood Q, Haq BU, Flemban TH, Kattan NA, Alshahrani T, Laref A (2022) The study of electronics, optoelectronics, thermoelectric, and mechanical properties of Zn/CdSnO3 perovskites. Mater Sci Semicond Process 137:106229. https://doi.org/10.1016/j.mssp.2021.106229

    Article  CAS  Google Scholar 

  20. Feng C, Gao Q, Xiong G, Chen Y, Pan Y, Fei Z, Li Y, Yukun L, Liu C, Liu Y (2022) Defect engineering technique for the fabrication of LaCoO3 perovskite catalyst via urea treatment for total oxidation of propane. Appl Catal B Environ 304:121005. https://doi.org/10.1016/j.apcatb.2021.121005

    Article  CAS  Google Scholar 

  21. Kavitha K, Sivakumar A (2022) Synthesis and characterisation of cerium doped bismuth titanate proficient UV shielding and NIR reflective reddish brown pigment by citrate auto combustion synthesis. Inorg Chem Commun 136:109162. https://doi.org/10.1016/j.inoche.2021.109162

    Article  CAS  Google Scholar 

  22. Singh S, Perween S, Ranjan A (2021) Dramatic enhancement in adsorption of Congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J Environ Chem Eng 9:105149. https://doi.org/10.1016/j.jece.2021.105149

    Article  CAS  Google Scholar 

  23. Hidehito O, Yo S, Tetsuo G (1976) Perovskite-type oxides as ethanol sensors. J Solid State Chem 17:299. https://doi.org/10.1016/0022-4596(76)90135-3

    Article  Google Scholar 

  24. Tae KH, Sahn N, Dong BJ, Yoonho K (1999) Low-fired (Zn,Mg)TiO3 microwave dielectrics. J Am Ceram Soc 82:3476. https://doi.org/10.1111/j.1151-2916.1999.tb02268.x

    Article  Google Scholar 

  25. Lv J, Tang M, Quan R, Chai Z (2019) Synthesis of solar heat reflective ZnTiO3 pigments with novel roof cooling effect. Ceram Int 45:15768. https://doi.org/10.1016/j.ceramint.2019.05.081

    Article  CAS  Google Scholar 

  26. Tuna Ö, Simsek EB, Sarıoğlan A, Çetin YD (2020) Multifunctional and highly active zinc titanate incorporated with copper for adsorptive hot syngas desulfurization and photocatalytic dye degradation. J Taiwan Inst Chem Eng 112:388. https://doi.org/10.1016/j.jtice.2020.04.008

    Article  CAS  Google Scholar 

  27. Bartram S, Slepetys RA (1961) Compound formation and crystal structure in the system ZnO-TiO2. J Am Ceram Soc 44:493. https://doi.org/10.1111/J.1151-2916.1961.TB13712.X

    Article  Google Scholar 

  28. Yamaguchi O, Morimi M, Kawabata H, Shimizu K (1987) Formation and transformation of ZnTiO3. J Am Ceram Soc 70:97. https://doi.org/10.1111/j.1151-2916.1987.tb05011.x

    Article  Google Scholar 

  29. Chang Y-S, Chang Y-H, Chen I-G, Chen G-J, Chai Y-L (2002) Synthesis and characterization of zinc titanate nano-crystal powders by sol–gel technique. J Cryst Growth 243:319. https://doi.org/10.1016/S0022-0248(02)01490-2

    Article  CAS  Google Scholar 

  30. Chai Y-L, Chang Y-S, Chen G-J, Hsiao Y-J (2008) The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process. Mater Res Bull 43:1066. https://doi.org/10.1016/j.materresbull.2007.06.002

    Article  CAS  Google Scholar 

  31. Wang C-L, Chu H-L, Ko H-H, His C-S, Li W-L, Hwang W-S, Chang K-M, Wang M-C (2015) Phase formation mechanism of the zinc titanate precursor powders prepared at various pH using a hydrothermal process. Ceram Int 41:2028. https://doi.org/10.1016/j.ceramint.2014.09.131

    Article  CAS  Google Scholar 

  32. Shyh-Chi W, Jeng Y-R, Yau W-H, Kuan-Te W, Tsai C-H, Chou C-P (2012) Nanoindentation response of zinc titanate thin films deposited by co-sputtering process. Appl Surf Sci 258:6730. https://doi.org/10.1016/j.apsusc.2012.02.076

    Article  CAS  Google Scholar 

  33. Gonzales LL, da Silva Hartwig M, Fassbender RU, Moreira EC, Pereira MB, Jardim PLG, Raubach CW, Moreira ML, Cava SS (2021) Properties of zinc titanates synthesized by microwave assisted hydrothermal method. Heliyon 7:e06521. https://doi.org/10.1016/j.heliyon.2021.e06521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu X (2012) Molten salt synthesis of ZnTiO3 powders with around 100 nm grain size crystalline morphology. Mater Lett 80:69. https://doi.org/10.1016/j.matlet.2012.04.048

    Article  CAS  Google Scholar 

  35. Phani AR, Passacantando M, Santucci S (2007) Synthesis of nanocrystalline ZnTiO3 perovskite thin films by sol–gel process assisted by microwave irradiation. J Phys Chem Solids 68:317. https://doi.org/10.1016/j.jpcs.2006.09.010

    Article  CAS  Google Scholar 

  36. Morsi RMM, Margha FH, Hamzawy EMA (2019) Preparation and electrical characterization of Zn-Titanate / borosilicate glass composites. Silicon 11:1845. https://doi.org/10.1007/s12633-018-0003-1

    Article  CAS  Google Scholar 

  37. Habibi MH, Mikhak M (2012) Titania/zinc oxide nanocomposite coatings on glass or quartz substrate for photocatalytic degradation of direct blue 71. Appl Surf Sci 258:6745. https://doi.org/10.1016/j.apsusc.2012.03.042

    Article  CAS  Google Scholar 

  38. Jain PK, Salim M, Kaur D (2016) Effect of phase transformation on optical and dielectric properties of pulsed laser deposited ZnTiO3 thin films. Superlattice Microst 92:308. https://doi.org/10.1016/j.spmi.2016.02.018

    Article  CAS  Google Scholar 

  39. Khudiar SS, Mutlak FA-H, Nayef UM (2021) Synthesis of ZnO nanostructures by hydrothermal method deposited on porous silicon for photo-conversion application. Optik 247:167903. https://doi.org/10.1016/j.ijleo.2021.167903

    Article  CAS  Google Scholar 

  40. Rahmani N, Dariani RS (2016) Effect of porous silicon buffer under different porosities on lateral overgrowth of TiO2 nanorods on silicon substrate. J Alloys Compd 681:421. https://doi.org/10.1016/j.jallcom.2016.04.234

    Article  CAS  Google Scholar 

  41. Rahmani N, Dariani RS, Rajabi M (2016) A proposed mechanism for investigating the effect of porous silicon buffer layer on TiO2 nanorods growth. Appl Surf Sci 366:359. https://doi.org/10.1016/j.apsusc.2016.01.075

    Article  CAS  Google Scholar 

  42. Dutta DP, Singh A, Tyagi AK (2014) Ag doped and Ag dispersed nano ZnTiO3: improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity. J Environ Chem Eng 2:2177. https://doi.org/10.1016/j.jece.2014.09.015

    Article  CAS  Google Scholar 

  43. Raveendra RS, Prashanth PA, Hari Krishna R, Bhagya NP, Sathyanarayani S, Nagabhushana BM (2017) Carbothermal synthesis and photoluminescence characteristics of pure Undoped ZnTiO3 nanocrystals. J Adv Phys Sci 2:1. https://doi.org/10.1016/j.jece.2014.09.015

    Article  CAS  Google Scholar 

  44. Abdulgafour HI, Yam FK, Hassan Z, AL-Heuseen K, Jawad MJ (2011) ZnO nanocoral reef grown on porous silicon substrates without catalyst. J Alloys Compd 509:5627. https://doi.org/10.1016/j.jallcom.2011.02.100

    Article  CAS  Google Scholar 

  45. Habibi MH, Mikhak M (2011) Synthesis of Nanocrystalline zinc Titanate Ecandrewsite by sol-gel: optimization of heat treatment condition for red shift sensitization. Curr Nanosci 7:603. https://doi.org/10.2174/157341311796196754

    Article  CAS  Google Scholar 

  46. Habibi MH, Mikhak M, Zendehdel M, Habibi M (2012) Influence of nanostructured zinc titanate, zinc oxide or titanium dioxide thin film coated on fluorine doped tin oxide as working electrodes for dye-sensitized solar cell. Int J Electrochem Sci 76787. Web of Science Id WOS:000307980800017

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Research and Technology Centre of Energy (CRTEn).

Funding

This complete work has been fnancial supported by Research and Technology Centre of Energy (CRTEn).

Author information

Authors and Affiliations

Authors

Contributions

Marouan khalifa and Khadija hammedi wrote the main manuscript. Hatem Ezzaouia and Chaker Bouzidi prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Marouan Khalifa.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The Author hereby consents to the publication of the work in the “Silicon” journal.

Competing Interests

The author declares that there is no confict of interest in the printing of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, M., Khadija, H., Bouzidi, C. et al. Morphological, Optical, and Crystalline Analysis of ZnTiO3 Nanostructures Deposited on Porous Silicon Substrate. Silicon 15, 2745–2752 (2023). https://doi.org/10.1007/s12633-022-02219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02219-z

Keywords

Navigation