Skip to main content

Advertisement

Log in

Implications of small RNAs in plant development, abiotic stress response and crop improvement in changing climate

  • Review
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

RNA sequencing technology has revealed a vast number of small RNAs (sRNAs) involved in plant development, stress management, and crop improvement. With improvements in molecular biology techniques and bioinformatic tools, sRNAs and their regulations have taken a mainstream position in various research fields, including plant science. Moreover, recent findings emphasize the significance of ncRNAs and sRNAs in spliceosome machinery. Non-coding RNAs in plants consist of ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), microRNAs (miRNAs) (19–25 nt), short interfering RNAs (21–23 nt), and long non-coding RNAs (lncRNAs) (over 200 nt). The miRNAs and siRNAs have similar sizes but originate from structurally different RNA molecules and follow distinct biogenesis pathways with different modes of action. Uncovering their impact on plant developmental patterns and stress regulatory mechanisms assumed paramount importance in plant stress biology, specifically projects focused on crop improvement. Plants constantly face and adapt to environmental stresses that hinder their growth and development. Adverse effects of abiotic stresses, such as drought, heat, cold, and salinity, on plant productivity are well documented. With the onset of environmental stresses, certain sRNAs and ncRNAs take up prominent roles in cellular homeostasis and coordinate the stress responses. This review explores the functions of sRNAs and their interactions during plant development and stress regulation. The theme of this paper becomes pertinent given the challenge of developing crops for future environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Achard P, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development. 2004;131:3357–65.

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed W, Xia Y, Zhang H, Li R, Bai G, Siddique KHM, et al. Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing. Sci Rep. 2019;9:14922. https://doi.org/10.1038/s41598-019-51443-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Akdogan G, Tufekci ED, Uranbey S, Unver T. miRNA-based drought regulation in wheat. Funct Integr Genomics. 2016;16(3):221–33.

    Article  PubMed  CAS  Google Scholar 

  4. Allen RS, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci U S A. 2007;104:16371–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Arribas-Hernández L, Marchais A, Poulsen C, Haase B, Hauptmann J, Benes V, et al. The slicer activity of ARGONAUTE1 is required specifically for the phasing, not production, of trans-acting short interfering RNAs in Arabidopsis. Plant Cell. 2016;28:1563–80. https://doi.org/10.1105/tpc.16.00121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2- like target genes. Plant Cell. 2003;15:2730–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ. pho2, a phosphate over accumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol. 2006;141:1000–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev PlantBiol. 2013;64:137–59. https://doi.org/10.1146/annurev-arplant-050312120043.

    Article  CAS  Google Scholar 

  9. Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A. Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom. 2012;13:1–11.

    Article  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis mechanism, and function. Cell. 2004;116:281–97. https://doi.org/10.1016/S0092-8674(04)00045-5.

    Article  PubMed  CAS  Google Scholar 

  11. Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu J-K. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol. 2012;12:1–11.

    Article  Google Scholar 

  12. Berger Y, et al. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development. 2009;136(823–832):49.

    Google Scholar 

  13. Bernstein E, Caudy AA, Hammond SM. Hannon GJ Rolefor a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–6. https://doi.org/10.1038/35053110.

    Article  PubMed  CAS  Google Scholar 

  14. Bian H, Xie Y, Guo F, Han N, Ma S, Zeng Z, Wang J, Yang Y, Zhu M. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol. 2012;196:149–61.

    Article  PubMed  CAS  Google Scholar 

  15. Bian XB, Yu PC, Dong L, Zhao Y, Yang H, Han YZ, Zhang LX. Regulatory role of non-coding RNA in ginseng rusty root symptom tissue. Sci Rep. 2021;11:9211.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Blein T, et al. A conserved molecular framework for compound leaf development. Science. 2008;322:1835–9.

    Article  PubMed  CAS  Google Scholar 

  17. Bhutia KL, Khanna VK, Meetei TNG, Bhutia ND. Effects of climate change on growth and development of chilli. Agrotechnology. 2018;7(2):1–4.

    Article  Google Scholar 

  18. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005;123:1279–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H. Anantagonistic function for Arabidopsis DCL2 in development and a newfunc- tion for DCL4 in generating viral siRNAs. EMBO J. 2006;25:3347–56. https://doi.org/10.1038/sj.emboj.7601217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Brant E, Budak H. Plant small non-coding RNAs and their roles in biotic stresses. Front Plant Sci. 2018;9:1038. https://doi.org/10.3389/fpls.2018.01038.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Budak H, Zhang B. MicroRNAs in model and complex organisms. Funct Integr Genomics. 2017;17:121–4. https://doi.org/10.1007/s10142-017-0544-1.

    Article  PubMed  CAS  Google Scholar 

  22. Busch BL, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. Plant Cell. 2011;23:3595–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cagirici HB, Alptekin B, Budak H. RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats. Sci Rep. 2017;7:10670.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cartolano M, et al. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet. 2007;39:901–5.

    Article  PubMed  CAS  Google Scholar 

  25. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.

    Article  PubMed  CAS  Google Scholar 

  26. Chen X. Small RNAs and their roles in plant development. BioloAnnu Rev Cell Dev Biol. 2009;25:21–44.

    Article  Google Scholar 

  27. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303:2022–5.

    Article  PubMed  CAS  Google Scholar 

  28. Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol. 2015;56:73–83.

    Article  PubMed  CAS  Google Scholar 

  29. Chitwood DH, Timmermans MCP. Small RNAs are on the move. Nature. 2010;467:415–9.

    Article  PubMed  CAS  Google Scholar 

  30. Chuck G, et al. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat Genet. 2007;39:1517–21.

    Article  PubMed  CAS  Google Scholar 

  31. Chuck G, et al. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Development. 2010;137:1243–50.

    Article  PubMed  CAS  Google Scholar 

  32. Contreras-Cubas C, Palomar M, Arteaga-Vazquez M, Reyes JL, Covarrubias AA. Non-coding RNAs in the plant response to abiotic stress. Planta. 2012;236:943–58.

    Article  PubMed  CAS  Google Scholar 

  33. D’Ario M, Griffiths-Jones S, Kim M. Small RNAs: big impact on plant development. Trends Plant Sci. 2017;22(12):1056.

    Article  PubMed  Google Scholar 

  34. Das A, Saxena S, Kumar K, Tribhuvan KU, Singh NK, Gaikwad K. Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Mol Biol Rep. 2020;47:3305–17.

    Article  PubMed  CAS  Google Scholar 

  35. Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, et al. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J. 2017;91:977–94. https://doi.org/10.1111/tpj.13620.

    Article  PubMed  CAS  Google Scholar 

  36. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci. 2017;8:378. https://doi.org/10.3389/fpls.2017.00378.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Esmaeli F, Shiran B, Fallahi H, Mirakhorli N, Budak H, Martínez-Gómez P. In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics. 2017;17:189–201.

    Article  Google Scholar 

  38. Feldmann KA. Steroid regulation improves crop yield. Nat Biotechnol. 2006;4:46–7. https://doi.org/10.1038/nbt0106-46.

    Article  CAS  Google Scholar 

  39. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  PubMed  CAS  Google Scholar 

  40. Gahlaut V, Baranwal VK, Khurana P. miRNomes involved in imparting thermotolerance to crop plants. 3 Biotech. 2018;8:497. https://doi.org/10.1007/s13205-018-1521-7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gaillochet C, Lohmann JU. The never-ending story: from pluripotency to plant developmental plasticity. Development. 2015;142:2237–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y. osa-MIR393: a salinity- and alkaline stress-related microRNA gene. Mol Biol Rep. 2011;38:237–42.

    Article  PubMed  CAS  Google Scholar 

  43. Gasciolli V, Mallory AC, Bartel DP, Vaucheret H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol. 2005;15:1494–500.

    Article  PubMed  CAS  Google Scholar 

  44. Gautrat P, Laffont C, Frugier F. Compact root architecture 2 promotes root competence for nodulation through the miR2111 systemic effector. Curr Biol. 2020;30:1339–45.

    Article  PubMed  CAS  Google Scholar 

  45. Golicz AA, Singh MB, Bhalla PL. The long intergenic noncoding RNA (LincRNA) landscape of the soybean genome. Plant Physiol. 2018;176:2133–47.

    Article  PubMed  CAS  Google Scholar 

  46. Guan Q, Lu X, Zeng H, Zhang Y, Zhu J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J. 2013;74:840–51. https://doi.org/10.1111/tpj.12169.

    Article  PubMed  CAS  Google Scholar 

  47. Guo J, Ren Y, Tang Z, Shi W, Zhou M. Characterization and expression profiling of the ICE-CBF-COR genes in wheat. PeerJ. 2019;7:81–90.

    Article  Google Scholar 

  48. Gupta M, Das NU. Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396. Plant Cell. 2015;27:2785–99.

    PubMed  PubMed Central  Google Scholar 

  49. Hajyzadeh M, Turktas M, Khawar KM, Unver T. MiR408 overexpression causes increased drought tolerance in chickpea. Gene. 2015;555:186–93. https://doi.org/10.1016/j.gene.2014.11.002.

    Article  PubMed  CAS  Google Scholar 

  50. Hamilton AJ, Baulcombe DC. A novel species of small anti- sense RNA in post transcriptional gene silencing. Science. 1999;286:950–2. https://doi.org/10.1126/science.286.5441.950.

    Article  PubMed  CAS  Google Scholar 

  51. Hammond SM, Bernstein E, Beach D, Hannon GJ. AnRNA- directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–6. https://doi.org/10.1038/35005107.

    Article  PubMed  CAS  Google Scholar 

  52. Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns. 2016;20(2):88–98.

    Article  PubMed  CAS  Google Scholar 

  53. Hatfield JL, Antle J, Garrett KA, Izaurralde RC, Mader T, Marshall E, Nearing M, Philip Robertson G, Ziska L. Indicators of climate change in agricultural systems. Clim Chang. 2018. https://doi.org/10.1007/s10584-018-2222-2.

    Article  Google Scholar 

  54. Hibara K, et al. Arabidopsis CUP-SHAPED COTYLE-DON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell. 2006;18:2946–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Horiguchi G, et al. The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J. 2005;43(68–78):57.

    Google Scholar 

  56. Huang L, Dong H, Zhou D, Li M, Liu Y, Zhang F, Feng Y, Yu D, Li S, Cao J. Syatematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa. Plant J. 2018;96:203–22.

    Article  PubMed  CAS  Google Scholar 

  57. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicerin the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8. https://doi.org/10.1126/science.1062961.

    Article  PubMed  CAS  Google Scholar 

  58. Irish VF, Sussex IM. Function of the APETALA-1 gene during Arabidopsis floral development. Plant Cell. 1990;2:741–53.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol. 2006;57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218.

    Article  CAS  Google Scholar 

  60. Juarez MT, et al. MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature. 2004;428:84–8.

    Article  PubMed  CAS  Google Scholar 

  61. Jung JH, et al. The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Sci. 2014;215:29–38.

    Article  PubMed  Google Scholar 

  62. Kamthan A, Chaudhuri A, Kamthan M, Datta A. Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci. 2015;6:208. https://doi.org/10.3389/fpls.2015.00208.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta. 2012;1819:137–48.

    Article  PubMed  CAS  Google Scholar 

  64. Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature. 2004;428:81–4.

    Article  PubMed  CAS  Google Scholar 

  65. Kim JH, et al. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J. 2003;36:94–104.

    Article  PubMed  CAS  Google Scholar 

  66. Knauer S, et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meri-stem. Dev Cell. 2013;24:125–32.

    Article  PubMed  CAS  Google Scholar 

  67. Koyama T, et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell. 2010;22:3574–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kumar R. Role of microRNAs in biotic and abiotic stress responses in crop plants. Appl Biochem Biotechnol. 2014;174:93–115.

    Article  PubMed  CAS  Google Scholar 

  69. Lämke J, Brzezinka K, Altmann S, Bäurle I. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J. 2016;35:162–75. https://doi.org/10.15252/embj.201592593.

    Article  PubMed  CAS  Google Scholar 

  70. Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, et al. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. 2010;38:3081–93. https://doi.org/10.1093/nar/gkp1240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic genelin-encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54. https://doi.org/10.1016/0092-8674(93)90529-Y.

    Article  PubMed  CAS  Google Scholar 

  72. Lee YS, et al. Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice. 2014;7:31.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, Nery JR, Baulcombe DC, Ecker JR. Mobile small RNAs regulate genome-wide DNA methylation. Proc Natl Acad Sci U S A. 2016;113:E801–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Li DD, Qiao HL, Qiu WJ, Xu X, Liu TM, Jiang QL, et al. Identification and functional characterization of intermediate-size non-coding RNAs in maize. BMC Genom. 2018;19:1–11.

    Article  CAS  Google Scholar 

  75. Li J, Duan YJ, Sun NL, Wang L, Feng SS, Fang YJ, Wang YP. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. Plant Sci. 2021;313:111062.

    Article  PubMed  CAS  Google Scholar 

  76. Li S, Castillo-Gonzalez C, Yu B, Zhang X. The functions of plant small RNAs in development and in stress responses. Plant J. 2017;90:654–70.

    Article  PubMed  CAS  Google Scholar 

  77. Li W, Wang T, Zhang Y, Li Y. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot. 2016;67:175–94. https://doi.org/10.1093/jxb/erv450.

    Article  PubMed  CAS  Google Scholar 

  78. Li WX, Oono Y, Zhu JH, He XJ, Wu JM, Iida K, Lu XY, Cui XP, Jin HL, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post transcriptionally to promote drought resistance. Plant Cell. 2008;20:2238–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, et al. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol. 2012;158:1279–92. https://doi.org/10.1104/pp.111.188789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Li X, et al. Control of tillering in rice. Nature. 2003;422:618–21.

    Article  PubMed  CAS  Google Scholar 

  81. Lin JS, Kuo CC, et al. MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci. 2018;9:68.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu DG, Mewalal R, Hu RB, Tuskan GA, Yang XH. New technologies accelerate the exploration of non-coding RNAs in horticultural plants. Hortic Res. 2017;4:17031.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell. 2012;24:4333–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Liu H, et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol. 2014;165:160–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Liu Q, Yan S, Yang T, Zhang S, Chen Y, Liu B. Small RNAs in regulating temperature stress response in plants. J Integr Plant Biol. 2017;59:774–91. https://doi.org/10.1111/jipb.12571.

    Article  PubMed  CAS  Google Scholar 

  86. Liu Q, Yang T, Yu T, Zhang S, Mao X, Zhao J, Wang X, Dong J, Liu B. Integrating small RNA sequencing with qtl mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice. Front Plant Sci. 2017;8:43.

    PubMed  PubMed Central  Google Scholar 

  87. Liu X, Zhang X, Sun B, Hao L, Liu C, Zhang D, Tang H, Li C, Li Y, Shi Y, et al. Genome-wide identification and comparative analysis of drought-related microRNAs in two maize inbred lines with contrasting drought tolerance by deep sequencing. PLoS ONE. 2019;14:e0219176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Llave C, Xie Z, Kasschau KD, Carrington JC. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science. 2002;297:2053–6. https://doi.org/10.1126/science.1076311.

    Article  PubMed  CAS  Google Scholar 

  89. Luan M, Xu M, Lu Y, Zhang Q, Zhang L, Zhang C, Fan Y, Lang Z, Wang L. Family-wide survey of miR169s and NF-Yas and their expression profiles response to abiotic stress in maize roots. PLoS ONE. 2014;9:91369.

    Article  Google Scholar 

  90. Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis. Plant J. 2015;84:169–87.

    Article  PubMed  CAS  Google Scholar 

  91. Ma J, Zhao P, Liu S, Yang Q, Guo H. The control of developmental phase transitions by microRNAs and their targets in seed plants. Int J Mol Sci. 2020;21:1971. https://doi.org/10.3390/ijms21061971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ma X, Zhao F, Zhou B. The characters of non-coding RNAs and their biological roles in plant development and abiotic stress response. Int J Mol Sci. 2022;23:4124. https://doi.org/10.3390/ijms23084124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Marin E, et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregu-latory network quantitatively regulating lateral root growth. Plant Cell. 2010;22:1104–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Martin A, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development. 2009;136:2873–81.

    Article  PubMed  CAS  Google Scholar 

  95. Maizel A, Markmann K, Timmermans M, Wachter A. To move or not to move: roles and specificity of plant RNA mobility. Curr Opin Plant Biol. 2020;57:52–60.

    Article  PubMed  CAS  Google Scholar 

  96. McConnell JR, Barton MK. Leaf polarity and meri- stem formation in Arabidopsis. Development. 1998;125:2935–42.

    Article  PubMed  CAS  Google Scholar 

  97. Melnyk CW, Molnar A, Baulcombe DC. Intercellular and systemic movement of RNA silencing signals. EMBO J. 2011;30:3553–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Meng XX, Li AX, Yu B, Li SJ. Interplay between miRNAs and lncRNAs: mode of action and biological roles in plant development and stress adaptation. Comput Struct Biotechnol. 2021;19:2567–74.

    Article  CAS  Google Scholar 

  99. Mette MF, Vander Winden J, Matzke M, Matzke AJ. Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol. 2002;130:6–9. https://doi.org/10.1104/pp.007047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science. 2010;328:872–5.

    Article  PubMed  CAS  Google Scholar 

  101. Montgomery TA, et al. Specificity of ARGONAUTE7– miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell. 2008;133:128–41.

    Article  PubMed  CAS  Google Scholar 

  102. Nair SK, et al. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleav-age. Proc Natl Acad Sci U S A. 2010;107:490–5.

    Article  PubMed  CAS  Google Scholar 

  103. Nelson JM, et al. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf’s dorsoventral axis. Development. 2002;129:4581–9.

    Article  PubMed  CAS  Google Scholar 

  104. Nikovics K, et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell. 2006;18:2929–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ochando I, et al. Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain-of-function allele of the class III HD-Zip gene INCURVATA4. Int J Dev Biol. 2008;52:953–61.

    Article  PubMed  CAS  Google Scholar 

  106. Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci. 2017;22:53–65. https://doi.org/10.1016/j.tplants.2016.08.015.

    Article  PubMed  CAS  Google Scholar 

  107. Ori N, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet. 2007;39:787–91.

    Article  PubMed  CAS  Google Scholar 

  108. Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS. Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant. 2016;9:1337–40.

    Article  PubMed  CAS  Google Scholar 

  109. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, et al. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J. 2010;62:960–76. https://doi.org/10.1111/j.0960-7412.2010.04208.x.

    Article  PubMed  CAS  Google Scholar 

  110. Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol. 2003;132:1382–90. https://doi.org/10.1104/pp.103.021980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Park W, Li J, Song R, Messing J, Chen X. Carpelfactory, a dicer homolog, and HEN1, a novel protein, actin microRNA metabolism in Arabidopsis thaliana. Curr Biol. 2002;12:1484–95. https://doi.org/10.1016/S0960-9822(02)01017-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Parry G, et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A. 2009;106:22540–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12:136–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Peláez P, Trejo MS, Iñiguez LP, Estrada-Navarrete G, Covarrubias AA, Reyes JL, et al. Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing. BMC Genom. 2012;13:83. https://doi.org/10.1186/1471-2164-13-83.

    Article  CAS  Google Scholar 

  115. Peng Y, Zhang X, Liu Y, Chen X. Exploring heat-response mechanisms of microRNAs based on microarray data of rice post-meiosis panicle. Int J Genomics. 2020;17:7582612. https://doi.org/10.1155/2020/7582612.

    Article  CAS  Google Scholar 

  116. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 2004;18:2368–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Peschansky VJ, Wahlestedt CWC. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9:3–12.

    Article  PubMed  CAS  Google Scholar 

  118. Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007;17:556–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Rai MI, Alam M, Lightfoot DA, Gurha P, Afzal AJ. Classification and experimental identification of plant long non-coding RNAs. Genomics. 2019;111:997–1005.

    Article  PubMed  CAS  Google Scholar 

  120. Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 2007;49:592–606.

    Article  PubMed  CAS  Google Scholar 

  121. Rodriguez RE, et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development. 2010;137:103–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins F Jr, Vazquez F. miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol. 2011;157:683–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Shen X, He J, Ping Y, Guo J, Hou N, Cao F, Li X, Geng D, Wang S, Chen P, et al. The positive feedback regulatory loop of miR160-Auxin Response Factor 17- HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. Plant Physiol. 2021;188:1686–708.

    Article  PubMed Central  Google Scholar 

  124. Song JB, et al. Regulation of leaf morphology by micro- RNA394 and its target leaf curling responsiveness. Plant Cell Physiol. 2012;53:1283–94.

    Article  PubMed  CAS  Google Scholar 

  125. Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM. miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. Plant Gene. 2016;5:56–64.

    Article  CAS  Google Scholar 

  126. Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell. 2014;26:1792–807. https://doi.org/10.1105/tpc.114.123851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sun X, Zheng HX, Li JL, Liu LN, Zhang XS, Sui N. Comparative transcriptome analysis reveals new lncRNAs responding to salt stress in sweet sorghum. Front Bioeng Biotechnol. 2020;8:331.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16:2001–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Swiezewski S, et al. Small RNA-mediated chromatin silencing directed to the 30 region of the Arabidopsis gene encoding the developmental regulator. FLC Proc Natl Acad Sci U S A. 2007;104:3633–8.

    Article  PubMed  CAS  Google Scholar 

  130. Tang Y, Du G, Xiang J, Hu C, Li X, Wang W, Zhu H, Qiao L, Zhao C, Wang J, et al. Genome-wide identification of auxin response factor (ARF) gene family and the miR160-ARF18-mediated response to salt stress in peanut (Arachis hypogaea L.). Genomics. 2022;114:171–84.

    Article  PubMed  CAS  Google Scholar 

  131. Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol. 2012;159:721–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Tilsner J, Nicolas W, Rosado A, Bayer EM. Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants. Annu Rev Plant Biol. 2016;67:337–64.

    Article  PubMed  CAS  Google Scholar 

  133. Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH, Bhasin H, Sexauer M, Stougaard J, Markmann K. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science. 2018;362:233–6.

    Article  PubMed  CAS  Google Scholar 

  134. Waititu JK, Zhang C, Liu J, Wang H. Plant non-coding RNAs: origin, biogenesis, mode of action and their roles in abiotic stress. Int J Mol Sci. 2020;21:8401. https://doi.org/10.3390/ijms21218401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell. 2009;138:738–49.

    Article  PubMed  CAS  Google Scholar 

  136. Wang Q, et al. Divide et impera: boundaries shape the plant body and initiate new meristems. New Phytol. 2016;209:485–98.

    Article  PubMed  CAS  Google Scholar 

  137. Wang S, Sun X, Hoshino Y, Yu Y, Jia B, Sun Z, Sun M, Duan X, Zhu Y. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in Rice (Oryza sativa L.). PLoSOne. 2014;9:e91357. https://doi.org/10.1371/journal.pone.0091357.

    Article  CAS  Google Scholar 

  138. Wang Y, Gao L, Li J, Zhu B, Zhu H, Luo Y, et al. Analysis of long-non-coding RNAs associated with ethylene in tomato. Gene. 2018;674:151–60.

    Article  PubMed  CAS  Google Scholar 

  139. Wang W, Liu D, Chen DD, Cheng YY, Zhang XP, Song LR, Hu MJ, Dong J, Shen FF. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol. 2019;16:362–75.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wei W, Li G, Jiang X, Wang Y, Ma Z, Niu Z, et al. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus. PLoS ONE. 2018;13:e0204998.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wollmann H, et al. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development. 2010;137:3633–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Wu G, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 2009;138:750–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development. 2006;133:3539–47.

    Article  PubMed  CAS  Google Scholar 

  144. Wu MF, et al. Arabidopsis microRNA167 controls pat-terns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development. 2006;133:4211–8.

    Article  PubMed  CAS  Google Scholar 

  145. Xia J, Zeng C, Chen Z, et al. Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. BMC Genomics. 2014;15:1–19.

    Article  Google Scholar 

  146. Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J, Wang Y, Zhang M. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE. 2012;7:e30039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Xia K, Zeng X, Jiao Z, Li M, Xu W, Nong Q, Mo H, Cheng T, Zhang M. Formation of protein disulfide bonds catalyzed by OsPDIL1;1 is mediated by MicroRNA5144-3p in rice. Plant Cell Physiol. 2018;59:331–42.

    Article  PubMed  CAS  Google Scholar 

  148. Xie K, et al. Genomic organization, differential expres-sion, and interaction of SQUAMOSA promoter-binding-like tran-scription factors and microRNA156 in rice. Plant Physiol. 2006;14:280–93.

    Article  Google Scholar 

  149. Xie Z, Allen E, Wilken A, Carrington JC. DICER-LIKE4functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2005;102:12984–9. https://doi.org/10.1073/pnas.0506426102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q. Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol. 2010;10:1–11.

    Article  Google Scholar 

  151. Yan K, Liu P, Wu CA, Yang GD, Xu R, Guo QH, Huang JG, Zheng CC. Stress-induced alternative splicing provides mechanism for the regulation of microRNA processing in Arabidopsis thaliana. Mol Cell. 2012;48:521–31.

    Article  PubMed  CAS  Google Scholar 

  152. Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L. Overexpression of micro RNA 319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ. 2013;36:2207–18.

    Article  PubMed  CAS  Google Scholar 

  153. Yant L, et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell. 2010;22:2156–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Yu YH, Ni ZY, Wang Y, Wan HN, Hu Z, Jiang QY, Sun XJ, Zhang H. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci. 2019;285:68–78.

    Article  PubMed  CAS  Google Scholar 

  155. Yuan J, Li J, Yang Y, Tan C, Zhu Y, Hu L, et al. Stress-responsive regulation of long non-coding RNA polyadenylation in Oryza sativa. Plant J. 2018;93:814–27.

    Article  PubMed  CAS  Google Scholar 

  156. Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H. Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bent grass. Plant Physiol. 2015;169:576–93.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zou CL, Wang YB, Wang B, Liu D, Liu L, Gai ZJ, Li CF. Long non-coding RNAs in the alkaline stress response in sugar beet (Beta vulgaris L.). BMC Plant Biol. 2020;20:227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Zhang F, Luo X, Zhou Y, Xie J. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Gri.). Biotechnol Lett. 2016;38:711–21.

    Article  PubMed  CAS  Google Scholar 

  159. Zhang J, Zhang H, Srivastava AK, Pan BJ, Fang J, Shi H, Zhu JK. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol. 2018;176:2082–94. https://doi.org/10.1104/pp.17.01432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Zhang X, Wang W, Wang M, Zhan HY, Liu JH. The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene–polyamine homeostasis. Plant Cell Physiol. 2016;57:1865–78. https://doi.org/10.1093/pcp/pcw108.

    Article  PubMed  CAS  Google Scholar 

  161. Zhang XP, Dong J, Deng FN, Wang W, Cheng YY, Song LR, Hu MJ, Shen J, Xu QJ, Shen FF. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biol. 2019;19:459.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Zhao J, He Q, Chen G, Wang L, Jin B. Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci. 2016;7:1213. https://doi.org/10.3389/fpls.2016.01213.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhao J, Yuan S, Zhou YN, Li Z, Hu BFG, Liu H, Li S, Luo H. Transgenic creeping bent grass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J. 2018. https://doi.org/10.1111/pbi.12960.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhao L, et al. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J. 2007;51:840–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Zhou M, Tang W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Mol Genet Genom. 2019;294:379–93.

    Article  CAS  Google Scholar 

  166. Zhdanov VP. Stochastic bursts in the kinetics of gene expression with regulation by long non-coding RNAs. JETP Lett. 2010;92:410–5.

    Article  CAS  Google Scholar 

  167. Zheng B, Wang Z, Li S, Yu B, Liu JY, Chen X. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev. 2009;23:2850–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell. 2011;145:242–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Zuo ZF, He W, Li J, Mo B, Liu L. Small RNAs: the essential regulators in plant thermotolerance. Front Plant Sci. 2021;12:726762. https://doi.org/10.3389/fpls.2021.726762.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Council of Scientific & Industrial Research (CSIR)-University Grant Commission (UGC), New Delhi, India for financial support in the form of Senior Research Fellowship to Miss. Rinku Mondal (2018-MAY-351826) and Mr. Adwaita Das (09/025(0250)/2018-EMR-I)

The authors would like to acknowledge Department of Botany, The University of Burdwan for research and infrastructure facilities.

Author information

Authors and Affiliations

Authors

Contributions

RM and AD wrote the manuscript. AB provided the critical comments and edited the manuscript.

Corresponding author

Correspondence to Abhijit Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Corresponding Editor: Sachin Rustagi; Reviewers: Anjana Rustagi, Neeraj Kumar Vasistha.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Das, A. & Bandyopadhyay, A. Implications of small RNAs in plant development, abiotic stress response and crop improvement in changing climate. Nucleus 66, 321–339 (2023). https://doi.org/10.1007/s13237-023-00447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-023-00447-1

Keywords

Navigation