Skip to main content

Advertisement

Log in

Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding endogenous RNAs (18–24 nucleotides) which regulate gene expression at posttranscriptional level either by degrading the target mRNA (plants) or by blocking the protein translation through binding with 3′ UTR of the target mRNA (animals). Though miRNAs are known to play key roles in animal development, miRNAs that are involved in plant developmental timing, cell proliferation, and several other physiological functions need to be investigated. In addition, plant miRNAs have been shown to be involved in various biotic (bacterial and viral pathogenesis) and abiotic stress responses such as oxidative, mineral nutrient deficiency, drought, salinity, temperature, cold (chilling), and other abiotic stress. miRNA expression profiling reveals that miRNAs which are involved in the progression of plant growth and development are differentially expressed during abiotic stress responses. The high-throughout techniques can provide genome-wide identification of stress-associated miRNAs under various abiotic stresses in plants. Various web-based and non-web-based computational tools facilitate in the identification and characterization of biotic/abiotic stress associated miRNAs and their target genes. In the future, miRNA-mediated RNA interference (RNAi) approach might help in developing transgenic crop plants for better crop improvement by conferring resistance against biotic (pathogens) as well as abiotic stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

siRNA:

Small interfering RNA

SBP:

Squamosa promoter Binding Protein

ARF:

Auxin response factors

DCL1:

Dicer-Like 1

HD-ZIP:

Class III homeodomain-leucine zipper

AGO-1:

Argonaute-1

SCL:

Scarecrow-like

TCP:

Teosinte branched1-cycloidea-PCF

TIR1:

Transport inhibitor response1

APS:

ATP sulfurylase

AST:

Sulfate transporter

GRF:

Growth regulating factor

CSD:

Cu/Zn superoxide dismutase

CCS:

Copper chaperone for superoxide dismutase

PHO2:

Phosphate transporter

UBC2:

Ubiquitin-conjugating enzyme

PPR:

Pentatrico peptide repeat protein

ABA:

Abscisic acid

ATP:

Adenosine triphosphate

MYB:

Myoblastosis

PARE:

Parallel analysis of RNA ends

PCD:

Programmed cell death

PCR:

Polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

RISC:

RNA-induced silencing complex

RNA:

Ribonucleic acid

stRNA:

Short temporal RNA

UTR:

Untranslated regions

RNAi:

RNA interference

HSR:

Hypersensitive reaction

PR:

Pathogenesis-related

ABF:

ABA response element binding factor

ABRE:

ABA response element

PRR:

Pathogen recognition receptor

PAMP:

Pathogen-associated molecular pattern

RSV:

Rice stripe virus

VSR:

Viral suppressor of RNA silencing

TYMV:

Turnip yellow mosaic virus

TuMV:

Turnip mosaic virus

CMV:

Cucumber mosaic virus

bHLH:

Basic helix-loop-helix

DREB:

Dehydration-responsive element binding

CBF:

C-repeat binding factor

DRE:

Dehydration response element

SDC:

Sulfur-containing defense compound

APS1:

ATP sulfurylase

SULTR:

Sulfate transporter

ETR:

Ethylene receptors

ROS:

Reactive oxygen species

AFB:

Auxin signaling F-Box

RAS:

Root system architecture

PCD:

Programmed cell death

PLC:

Phospholipase C

ABF-ABRE-binding factor:

AREB-ABA-responsive element binding protein

CRT:

C-repeat element

DRE:

Dehydration-responsive element

LTRE:

Low-temperature-response element

COR:

Cold responsive

FRY1:

Inositol polyphosphate 1-phosphatase

References

  1. Abdel-Ghany, S. E., & Pilon, M. (2008). MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem, 283, 15932–15945.

    CAS  Google Scholar 

  2. Adai, A., Johnson, C., Mlotshwa, S., Archer-Evans, S., Manocha, V., Vance, V., & Sundaresan, V. (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 15, 78–91.

    CAS  Google Scholar 

  3. Addo-Quaye, C., Eshoo, T. W., Bartel, D. P., & Axtell, M. J. (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol, 18, 758–762.

    CAS  Google Scholar 

  4. Ahmad, R., Parfitt, D. E., Fass, J., Ogundiwin, E., Dhingra, A., Gradziel, T. M., Lin, D., Joshi, N. A., Martinez-Garcia, P. J., & Crisosto, C. H. (2011). Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics, 12, 569.

    CAS  Google Scholar 

  5. Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121, 207–221.

  6. Bari, R., Datt Pant, B., Stitt, M., & Scheible, W. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 141, 988–999.

    CAS  Google Scholar 

  7. Beauclair, L., Yu, A., & Bouche, N. (2010). microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J, 62, 454–462.

    CAS  Google Scholar 

  8. Bonnet, E., He, Y., Billiau, K., & Van de Peer, Y. (2010). TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics, 26, 1566–1568.

    CAS  Google Scholar 

  9. Burkhead, J. L., Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. New Phytol, 182, 799–816.

    CAS  Google Scholar 

  10. Chen, X. (2005). MicroRNA biogenesis and function in plants. FEBS Lett, 579, 5923–5931.

    CAS  Google Scholar 

  11. Chen, X. (2009). Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol, 25, 21–44.

    Google Scholar 

  12. Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., & Su, C. L. (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell, 18, 412–421.

    CAS  Google Scholar 

  13. Choi, H., Hong, J., Ha, J., Kang, J., & Kim, S. Y. (2000). ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 275, 1723–1730.

    CAS  Google Scholar 

  14. Chu, C. C., Lee, W. C., Guo, W. Y., Pan, S. M., Chen, L. J., Li, H. M., & Jinn, T. L. (2005). A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 139, 425–436.

    CAS  Google Scholar 

  15. Creelman, R. A., & Mullet, J. E. (1997). Biosynthesis and Action of Jasmonates in Plants. Annu Rev Plant Physiol Plant Mol Biol, 48, 355–381.

    CAS  Google Scholar 

  16. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature, 432, 231–235.

    CAS  Google Scholar 

  17. Devaiah, B. N., Karthikeyan, A. S., & Raghothama, K. G. (2007). WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol, 143, 1789–1801.

    CAS  Google Scholar 

  18. Dezulian, T., Remmert, M., Palatnik, J. F., Weigel, D., & Huson, D. H. (2006). Identification of plant microRNA homologs. Bioinformatics, 22, 359–360.

    CAS  Google Scholar 

  19. Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., & Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot, 103, 29–38.

    CAS  Google Scholar 

  20. Du, P., Wu, J., Zhang, J., Zhao, S., Zheng, H., Gao, G., Wei, L., & Li, Y. (2011). Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog, 7, e1002176.

    CAS  Google Scholar 

  21. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92–105.

    CAS  Google Scholar 

  22. Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., & Zhu, J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol, 15, 2038–2043.

    CAS  Google Scholar 

  23. German, M. A., Luo, S., Schroth, G., Meyers, B. C., & Green, P. J. (2009). Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc, 4, 356–362.

    CAS  Google Scholar 

  24. German, M. A., Pillay, M., Jeong, D. H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L. A., Nobuta, K., German, R., De Paoli, E., Lu, C., Schroth, G., Meyers, B. C., & Green, P. J. (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 26, 941–946.

    CAS  Google Scholar 

  25. Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M., & Birnbaum, K. D. (2008). Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci U S A, 105, 803–808.

    CAS  Google Scholar 

  26. Grad, Y., Aach, J., Hayes, G. D., Reinhart, B. J., Church, G. M., Ruvkun, G., & Kim, J. (2003). Computational and experimental identification of C. elegans microRNAs. Mol Cell, 11, 1253–1263.

    CAS  Google Scholar 

  27. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., & Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res, 34, D140–144.

    CAS  Google Scholar 

  28. Guan, D. G., Liao, J. Y., Qu, Z. H., Zhang, Y., & Qu, L. H. (2011). mirExplorer: detecting microRNAs from genome and next generation sequencing data using the AdaBoost method with transition probability matrix and combined features. RNA Biol, 8, 922–934.

    CAS  Google Scholar 

  29. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., & Hannon, G. J. (2001). Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146–1150.

    CAS  Google Scholar 

  30. Heim, M. A., Jakoby, M., Werber, M., Martin, C., Weisshaar, B., & Bailey, P. C. (2003). The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol, 20, 735–747.

    CAS  Google Scholar 

  31. Hock, J., & Meister, G. (2008). The Argonaute protein family. Genome Biol, 9, 210.

    Google Scholar 

  32. Hsieh, L. C., Lin, S. I., Shih, A. C., Chen, J. W., Lin, W. Y., Tseng, C. Y., Li, W. H., & Chiou, T. J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol, 151, 2120–2132.

    Google Scholar 

  33. Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W. J., Wang, X., Xie, B., Ni, P., Ren, Y., Zhu, H., Li, J., Lin, K., Jin, W., Fei, Z., Li, G., Staub, J., Kilian, A., van der Vossen, E. A., Wu, Y., Guo, J., He, J., Jia, Z., Tian, G., Lu, Y., Ruan, J., Qian, W., Wang, M., Huang, Q., Li, B., Xuan, Z., Cao, J., Asan, Wu, Z., Zhang, J., Cai, Q., Bai, Y., Zhao, B., Han, Y., Li, Y., Li, X., Wang, S., Shi, Q., Liu, S., Cho, W. K., Kim, J. Y., Xu, Y., Heller-Uszynska, K., Miao, H., Cheng, Z., Zhang, S., Wu, J., Yang, Y., Kang, H., Li, M., Liang, H., Ren, X., Shi, Z., Wen, M., Jian, M., Yang, H., Zhang, G., Yang, Z., Chen, R., Ma, L., Liu, H., Zhou, Y., Zhao, J., Fang, X., Fang, L., Liu, D., Zheng, H., Zhang, Y., Qin, N., Li, Z., Yang, G., Yang, S., Bolund, L., Kristiansen, K., Li, S., Zhang, X., Wang, J., Sun, R., Zhang, B., Jiang, S. & Du, Y. (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet, 41, 1275–1281.

  34. Huang, T. H., Fan, B., Rothschild, M. F., Hu, Z. L., Li, K., & Zhao, S. H. (2007). MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics, 8, 341.

    Google Scholar 

  35. Hubbard, K. E., Nishimura, N., Hitomi, K., Getzoff, E. D., & Schroeder, J. I. (2010). Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev, 24, 1695–1708.

    CAS  Google Scholar 

  36. IRGSP. (2005). The map-based sequence of the rice genome. Nature, 436, 793–800.

    Google Scholar 

  37. Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyere, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Del Fabbro, C., Alaux, M., Di Gaspero, G., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Le Clainche, I., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pe, M. E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A. F., Weissenbach, J., Quetier, F., & Wincker, P. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463–467.

    CAS  Google Scholar 

  38. Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell, 14, 787–799.

    CAS  Google Scholar 

  39. Jones-Rhoades, M. W., Bartel, D. P., & Bartel, B. (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol, 57, 19–53.

    CAS  Google Scholar 

  40. Kantar, M., Unver, T., & Budak, H. (2010). Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics, 10, 493–507.

    CAS  Google Scholar 

  41. Kawaguchi, R., Girke, T., Bray, E. A., & Bailey-Serres, J. (2004). Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J, 38, 823–839.

    CAS  Google Scholar 

  42. Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta, 1819, 137–148.

    CAS  Google Scholar 

  43. Kim, J. S., Mizoi, J., Yoshida, T., Fujita, Y., Nakajima, J., Ohori, T., Todaka, D., Nakashima, K., Hirayama, T., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol, 52, 2136–2146.

    CAS  Google Scholar 

  44. Kim, S. K., Nam, J. W., Rhee, J. K., Lee, W. J. & Zhang, B. T. (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics, 7, 411.

  45. Kusenda, B., Mraz, M., Mayer, J., & Pospisilova, S. (2006). MicroRNA biogenesis, functionality and cancer relevance. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 150, 205–215.

    CAS  Google Scholar 

  46. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294, 853–858.

    CAS  Google Scholar 

  47. Lee, R., Feinbaum, R. & Ambros, V. (2004) A short history of a short RNA. Cell, 116, S89-92, 81 p following S96.

  48. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    CAS  Google Scholar 

  49. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., & Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.

    CAS  Google Scholar 

  50. Lee, Y., Jeon, K., Lee, J. T., Kim, S., & Kim, V. N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21, 4663–4670.

    CAS  Google Scholar 

  51. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., & Burge, C. B. (2003). Prediction of mammalian microRNA targets. Cell, 115, 787–798.

    CAS  Google Scholar 

  52. Li, S. C., Chan, W. C., Ho, M. R., Tsai, K. W., Hu, L. Y., Lai, C. H., Hsu, C. N., Hwang, P. P. and Lin, W. C. (2010) Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genomics, 11 Suppl 4, S8.

  53. Li, T., Li, H., Zhang, Y. X., & Liu, J. Y. (2011). Identification and analysis of seven H(2)O(2)-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res, 39, 2821–2833.

    CAS  Google Scholar 

  54. Li, W. X., Oono, Y., Zhu, J., He, X. J., Wu, J. M., Iida, K., Lu, X. Y., Cui, X., Jin, H., & Zhu, J. K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell, 20, 2238–2251.

    CAS  Google Scholar 

  55. Liang, G., Yang, F., & Yu, D. (2010). MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J, 62, 1046–1057.

    CAS  Google Scholar 

  56. Liu, H. H., Tian, X., Li, Y. J., Wu, C. A., & Zheng, C. C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14, 836–843.

    CAS  Google Scholar 

  57. Liu, X., Fortin, K., & Mourelatos, Z. (2008). MicroRNAs: biogenesis and molecular functions. Brain Pathol, 18, 113–121.

    CAS  Google Scholar 

  58. Llave, C., Kasschau, K. D., Rector, M. A., & Carrington, J. C. (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14, 1605–1619.

    CAS  Google Scholar 

  59. Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., & Chiang, V. L. (2005). Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 17, 2186–2203.

    CAS  Google Scholar 

  60. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.

    CAS  Google Scholar 

  61. Lv, D. K., Bai, X., Li, Y., Ding, X. D., Ge, Y., Cai, H., Ji, W., Wu, N., & Zhu, Y. M. (2010). Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene, 459, 39–47.

    CAS  Google Scholar 

  62. Mhuantong, W., & Wichadakul, D. (2009). MicroPC (microPC): A comprehensive resource for predicting and comparing plant microRNAs. BMC Genomics, 10, 366.

    Google Scholar 

  63. Milev, I., Yahubyan, G., Minkov, I. and Baev, V. (2011) miRTour: Plant miRNA and target prediction tool. Bioinformation, 6, 248–249.

  64. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 7, 405–410.

    CAS  Google Scholar 

  65. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci, 9, 490–498.

    CAS  Google Scholar 

  66. Morel, J. B., & Dangl, J. L. (1997). The hypersensitive response and the induction of cell death in plants. Cell Death Differ, 4, 671–683.

    CAS  Google Scholar 

  67. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312, 436–439.

    CAS  Google Scholar 

  68. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., & Chua, N. H. (2006). Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol, 24, 1420–1428.

    CAS  Google Scholar 

  69. Olsen, P. H., & Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216, 671–680.

    CAS  Google Scholar 

  70. Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., & Poethig, R. S. (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A, 102, 3691–3696.

    CAS  Google Scholar 

  71. Park, W., Li, J., Song, R., Messing, J., & Chen, X. (2002). CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol, 12, 1484–1495.

    CAS  Google Scholar 

  72. Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A. K., Chapman, J., Feltus, F. A., Gowik, U., Grigoriev, I. V., Lyons, E., Maher, C. A., Martis, M., Narechania, A., Otillar, R. P., Penning, B. W., Salamov, A. A., Wang, Y., Zhang, L., Carpita, N. C., Freeling, M., Gingle, A. R., Hash, C. T., Keller, B., Klein, P., Kresovich, S., McCann, M. C., Ming, R., Peterson, D. G., Mehboob ur, R., Ware, D., Westhoff, P., Mayer, K. F., Messing, J. & Rokhsar, D. S. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature, 457, 551–556.

  73. Qin, F., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2011). Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol, 52, 1569–1582.

    CAS  Google Scholar 

  74. Qu, J., Ye, J., & Fang, R. (2007). Artificial microRNA-mediated virus resistance in plants. J Virol, 81, 6690–6699.

    CAS  Google Scholar 

  75. Rathinasabapathi, B. (2000). Metabolic Engineering for Stress Tolerance: Installing Osmoprotectant Synthesis Pathways. Annals of Botany, 86, 709–716.

    CAS  Google Scholar 

  76. Rausch, T., & Wachter, A. (2005). Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci, 10, 503–509.

    CAS  Google Scholar 

  77. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in plants. Genes Dev, 16, 1616–1626.

    CAS  Google Scholar 

  78. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., & Bartel, D. P. (2002). Prediction of plant microRNA targets. Cell, 110, 513–520.

    CAS  Google Scholar 

  79. Ritchie, W., Theodule, F. X., & Gautheret, D. (2008). Mireval: a web tool for simple microRNA prediction in genome sequences. Bioinformatics, 24, 1394–1396.

    CAS  Google Scholar 

  80. Rusinov, V., Baev, V., Minkov, I. N., & Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res, 33, W696–700.

    CAS  Google Scholar 

  81. Sanghera, G. S., Wani, S. H., Hussain, W., & Singh, N. B. (2011). Engineering cold stress tolerance in crop plants. Curr Genomics, 12, 30–43.

    CAS  Google Scholar 

  82. Sato, S., Hirakawa, H., Isobe, S., Fukai, E., Watanabe, A., Kato, M., Kawashima, K., Minami, C., Muraki, A., Nakazaki, N., Takahashi, C., Nakayama, S., Kishida, Y., Kohara, M., Yamada, M., Tsuruoka, H., Sasamoto, S., Tabata, S., Aizu, T., Toyoda, A., Shin-i, T., Minakuchi, Y., Kohara, Y., Fujiyama, A., Tsuchimoto, S., Kajiyama, S., Makigano, E., Ohmido, N., Shibagaki, N., Cartagena, J. A., Wada, N., Kohinata, T., Atefeh, A., Yuasa, S., Matsunaga, S., & Fukui, K. (2011). Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res, 18, 65–76.

    CAS  Google Scholar 

  83. Schauer, S. E., Jacobsen, S. E., Meinke, D. W., & Ray, A. (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci, 7, 487–491.

    CAS  Google Scholar 

  84. Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X. C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C., & Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463, 178–183.

    CAS  Google Scholar 

  85. Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T. A., Minx, P., Reily, A. D., Courtney, L., Kruchowski, S. S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S. M., Belter, E., Du, F., Kim, K., Abbott, R. M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S. M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M. J., McMahan, L., Van Buren, P., Vaughn, M. W., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science, 326, 1112–1115.

    CAS  Google Scholar 

  86. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115, 199–208.

    CAS  Google Scholar 

  87. Sethupathy, P., Corda, B., & Hatzigeorgiou, A. G. (2006). TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA, 12, 192–197.

    CAS  Google Scholar 

  88. Shukla, L. I., Chinnusamy, V., & Sunkar, R. (2008). The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta, 1779, 743–748.

    CAS  Google Scholar 

  89. Stenvang, J., Petri, A., Lindow, M., Obad, S., & Kauppinen, S. (2012). Inhibition of microRNA function by antimiR oligonucleotides. Silence, 3, 1.

    CAS  Google Scholar 

  90. Sunkar, R., Kapoor, A., & Zhu, J. K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18, 2051–2065.

    CAS  Google Scholar 

  91. Sunkar, R., Li, Y. F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends Plant Sci, 17, 196–203.

    CAS  Google Scholar 

  92. Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16, 2001–2019.

    CAS  Google Scholar 

  93. Szczesniak, M. W., Deorowicz, S., Gapski, J., Kaczynski, L., & Makalowska, I. (2012). miRNEST database: an integrative approach in microRNA search and annotation. Nucleic Acids Res, 40, D198–204.

    CAS  Google Scholar 

  94. Thieme, C. J., Gramzow, L., Lobbes, D., & Theissen, G. (2011). SplamiR–prediction of spliced miRNAs in plants. Bioinformatics, 27, 1215–1223.

    CAS  Google Scholar 

  95. Trindade, I., Capitao, C., Dalmay, T., Fevereiro, M. P., & Santos, D. M. (2010). miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 231, 705–716.

    CAS  Google Scholar 

  96. Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen, G. L., Cooper, D., Coutinho, P. M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Dejardin, A., Depamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjarvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Leple, J. C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D. R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouze, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C. J., Uberbacher, E., Unneberg, P., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313, 1596–1604.

    CAS  Google Scholar 

  97. Vahap ELDEM, S. O., Turgay ÜNVER (2013) Plant microRNAs: new players in functional genomics. Turkish Journal of Agriculture and Forestry, 37, 1–21.

  98. Vandenabeele, S., Van Der Kelen, K., Dat, J., Gadjev, I., Boonefaes, T., Morsa, S., Rottiers, P., Slooten, L., Van Montagu, M., Zabeau, M., Inze, D., & Van Breusegem, F. (2003). A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci U S A, 100, 16113–16118.

    CAS  Google Scholar 

  99. Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S. K., Troggio, M., Pruss, D., Salvi, S., Pindo, M., Baldi, P., Castelletti, S., Cavaiuolo, M., Coppola, G., Costa, F., Cova, V., Dal Ri, A., Goremykin, V., Komjanc, M., Longhi, S., Magnago, P., Malacarne, G., Malnoy, M., Micheletti, D., Moretto, M., Perazzolli, M., Si-Ammour, A., Vezzulli, S., Zini, E., Eldredge, G., Fitzgerald, L. M., Gutin, N., Lanchbury, J., Macalma, T., Mitchell, J. T., Reid, J., Wardell, B., Kodira, C., Chen, Z., Desany, B., Niazi, F., Palmer, M., Koepke, T., Jiwan, D., Schaeffer, S., Krishnan, V., Wu, C., Chu, V. T., King, S. T., Vick, J., Tao, Q., Mraz, A., Stormo, A., Stormo, K., Bogden, R., Ederle, D., Stella, A., Vecchietti, A., Kater, M. M., Masiero, S., Lasserre, P., Lespinasse, Y., Allan, A. C., Bus, V., Chagne, D., Crowhurst, R. N., Gleave, A. P., Lavezzo, E., Fawcett, J. A., Proost, S., Rouze, P., Sterck, L., Toppo, S., Lazzari, B., Hellens, R. P., Durel, C. E., Gutin, A., Bumgarner, R. E., Gardiner, S. E., Skolnick, M., Egholm, M., Van de Peer, Y., Salamini, F., & Viola, R. (2010). The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet, 42, 833–839.

    CAS  Google Scholar 

  100. Vidal, E. A., Araus, V., Lu, C., Parry, G., Green, P. J., Coruzzi, G. M., & Gutierrez, R. A. (2010). Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 107, 4477–4482.

    CAS  Google Scholar 

  101. Voinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet, 6, 206–220.

    CAS  Google Scholar 

  102. Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J. H., Bancroft, I., Cheng, F., Huang, S., Li, X., Hua, W., Freeling, M., Pires, J. C., Paterson, A. H., Chalhoub, B., Wang, B., Hayward, A., Sharpe, A. G., Park, B. S., Weisshaar, B., Liu, B., Li, B., Tong, C., Song, C., Duran, C., Peng, C., Geng, C., Koh, C., Lin, C., Edwards, D., Mu, D., Shen, D., Soumpourou, E., Li, F., Fraser, F., Conant, G., Lassalle, G., King, G. J., Bonnema, G., Tang, H., Belcram, H., Zhou, H., Hirakawa, H., Abe, H., Guo, H., Jin, H., Parkin, I. A., Batley, J., Kim, J. S., Just, J., Li, J., Xu, J., Deng, J., Kim, J. A., Yu, J., Meng, J., Min, J., Poulain, J., Hatakeyama, K., Wu, K., Wang, L., Fang, L., Trick, M., Links, M. G., Zhao, M., Jin, M., Ramchiary, N., Drou, N., Berkman, P. J., Cai, Q., Huang, Q., Li, R., Tabata, S., Cheng, S., Zhang, S., Sato, S., Sun, S., Kwon, S. J., Choi, S. R., Lee, T. H., Fan, W., Zhao, X., Tan, X., Xu, X., Wang, Y., Qiu, Y., Yin, Y., Li, Y., Du, Y., Liao, Y., Lim, Y., Narusaka, Y., Wang, Z., Li, Z., Xiong, Z., & Zhang, Z. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 43, 1035–1039.

    CAS  Google Scholar 

  103. Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., & Li, Y. (2005). MicroRNA identification based on sequence and structure alignment. Bioinformatics, 21, 3610–3614.

    CAS  Google Scholar 

  104. Weber, M. J. (2005). New human and mouse microRNA genes found by homology search. FEBS J, 272, 59–73.

    CAS  Google Scholar 

  105. Wilkinson, S., Kudoyarova, G. R., Veselov, D. S., Arkhipova, T. N., & Davies, W. J. (2012). Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot, 63, 3499–3509.

    CAS  Google Scholar 

  106. Wu, Y., Wei, B., Liu, H., Li, T., & Rayner, S. (2011). MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics, 12, 107.

    CAS  Google Scholar 

  107. Xiang, C., & Oliver, D. J. (1998). Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell, 10, 1539–1550.

    CAS  Google Scholar 

  108. Xie, F. and Zhang, B. Target-align: a tool for plant microRNA target identification. Bioinformatics, 26, 3002–3003.

  109. Xie, Z., Kasschau, K. D., & Carrington, J. C. (2003). Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol, 13, 784–789.

    CAS  Google Scholar 

  110. Xie, Z. H. (2009). The role of endogenous small RNAs in plant stress responses. Yi Chuan, 31, 809–817.

    CAS  Google Scholar 

  111. Xu, Z., Zhong, S., Li, X., Li, W., Rothstein, S. J., Zhang, S., Bi, Y., & Xie, C. (2011). Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One, 6, e28009.

    CAS  Google Scholar 

  112. Yamasaki, H., Abdel-Ghany, S. E., Cohu, C. M., Kobayashi, Y., Shikanai, T., & Pilon, M. (2007). Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem, 282, 16369–16378.

    CAS  Google Scholar 

  113. Yan, N., Lu, Y., Sun, H., Tao, D., Zhang, S., Liu, W., & Ma, Y. (2007). A microarray for microRNA profiling in mouse testis tissues. Reproduction, 134, 73–79.

    CAS  Google Scholar 

  114. Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011–3016.

    CAS  Google Scholar 

  115. Young, N. D., Debelle, F., Oldroyd, G. E., Geurts, R., Cannon, S. B., Udvardi, M. K., Benedito, V. A., Mayer, K. F., Gouzy, J., Schoof, H., Van de Peer, Y., Proost, S., Cook, D. R., Meyers, B. C., Spannagl, M., Cheung, F., De Mita, S., Krishnakumar, V., Gundlach, H., Zhou, S., Mudge, J., Bharti, A. K., Murray, J. D., Naoumkina, M. A., Rosen, B., Silverstein, K. A., Tang, H., Rombauts, S., Zhao, P. X., Zhou, P., Barbe, V., Bardou, P., Bechner, M., Bellec, A., Berger, A., Berges, H., Bidwell, S., Bisseling, T., Choisne, N., Couloux, A., Denny, R., Deshpande, S., Dai, X., Doyle, J. J., Dudez, A. M., Farmer, A. D., Fouteau, S., Franken, C., Gibelin, C., Gish, J., Goldstein, S., Gonzalez, A. J., Green, P. J., Hallab, A., Hartog, M., Hua, A., Humphray, S. J., Jeong, D. H., Jing, Y., Jocker, A., Kenton, S. M., Kim, D. J., Klee, K., Lai, H., Lang, C., Lin, S., Macmil, S. L., Magdelenat, G., Matthews, L., McCorrison, J., Monaghan, E. L., Mun, J. H., Najar, F. Z., Nicholson, C., Noirot, C., O'Bleness, M., Paule, C. R., Poulain, J., Prion, F., Qin, B., Qu, C., Retzel, E. F., Riddle, C., Sallet, E., Samain, S., Samson, N., Sanders, I., Saurat, O., Scarpelli, C., Schiex, T., Segurens, B., Severin, A. J., Sherrier, D. J., Shi, R., Sims, S., Singer, S. R., Sinharoy, S., Sterck, L., Viollet, A., Wang, B. B., et al. (2011). The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 480, 520–524.

    CAS  Google Scholar 

  116. Zeng, Y., Yi, R., & Cullen, B. R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A, 100, 9779–9784.

    CAS  Google Scholar 

  117. Zeng, Y., Yi, R., & Cullen, B. R. (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J, 24, 138–148.

    CAS  Google Scholar 

  118. Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2006). Plant microRNA: a small regulatory molecule with big impact. Dev Biol, 289, 3–16.

    CAS  Google Scholar 

  119. Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P., & Anderson, T. A. (2006). Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci, 63, 246–254.

    CAS  Google Scholar 

  120. Zhang, B. H., Pan, X. P., Wang, Q. L., Cobb, G. P., & Anderson, T. A. (2005). Identification and characterization of new plant microRNAs using EST analysis. Cell Res, 15, 336–360.

    Google Scholar 

  121. Zhang, H., Kolb, F. A., Brondani, V., Billy, E., & Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J, 21, 5875–5885.

    CAS  Google Scholar 

  122. Zhang, J., Xu, Y., Huan, Q., & Chong, K. (2009). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics, 10, 449.

    Google Scholar 

  123. Zhang, W., Gao, S., Zhou, X., Chellappan, P., Chen, Z., Zhang, X., Fromuth, N., Coutino, G., Coffey, M., & Jin, H. (2011). Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol, 75, 93–105.

    CAS  Google Scholar 

  124. Zhang, Y. (2005). miRU: an automated plant miRNA target prediction server. Nucleic Acids Res, 33, W701–704.

    CAS  Google Scholar 

  125. Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., & Jin, Y. (2007). Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun, 354, 585–590.

    CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the Indian Institute of Technology, Guwahati (India) for providing M.Tech. fellowship in the course of his manuscript preparation. The author also expresses gratitude to Prof. Dr. Vikash Kumar Dubey for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R. Role of MicroRNAs in Biotic and Abiotic Stress Responses in Crop Plants. Appl Biochem Biotechnol 174, 93–115 (2014). https://doi.org/10.1007/s12010-014-0914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0914-2

Keywords

Navigation