Skip to main content
Log in

Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.)

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To identify drought stress-responsive conserved microRNA (miRNA) from Dongxiang wild rice (Oryza rufipogon Griff., DXWR) on a genome-wide scale, high-throughput sequencing technology was used to sequence libraries of DXWR samples, treated with and without drought stress.

Results

505 conserved miRNAs corresponding to 215 families were identified. 17 were significantly down-regulated and 16 were up-regulated under drought stress. Stem-loop qRT-PCR revealed the same expression patterns as high-throughput sequencing, suggesting the accuracy of the sequencing result was high. Potential target genes of the drought-responsive miRNA were predicted to be involved in diverse biological processes. Furthermore, 16 miRNA families were first identified to be involved in drought stress response from plants.

Conclusion

These results present a comprehensive view of the conserved miRNA and their expression patterns under drought stress for DXWR, which will provide valuable information and sequence resources for future basis studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadvand R, Poczai P, Hajianfar R, Kolics B, Gorji AM, Polgár Z, Taller J (2014) Next generation sequencing based development of intron-targeting markers in tetraploid potato and their transferability to other Solanum species. Gene 540:117–121

    Article  CAS  PubMed  Google Scholar 

  • Akdogan G, Tufekci ED, Uranbey S, Unver T (2015) miRNA-based drought regulation in wheat. Funct Integr Genomic. doi:10.1007/s10142-015-0452-1

    Google Scholar 

  • Atwell BJ, Wang H, Scafaro AP (2014) Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci 215–216:48–58

    Article  PubMed  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekele WA, Wieckhorst S, Friedt W, Snowdon RJ (2013) High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array. Plant Biotechnol J 11:1112–1125

    Article  CAS  PubMed  Google Scholar 

  • Bouman BAM, Peng S, Castaòeda AR, Visperas RM (2005) Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag 74:87–105

    Article  Google Scholar 

  • Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41:D226–D232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XR, Yang KS, Fu JR, Zhu CL, Peng XS, He XP, He HH (2008) Identification and genetic analysis of fertility restoration ability in Dongxiang wild rice (Oryza rufipogon). Rice Sci 15:21–28

    Article  Google Scholar 

  • Chen ZX, Li FL, Yang SN, Dong YB, Yuan QH, Wang F, Li WM, Jiang Y, Jia SR, Pei XW (2013) Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.). PLoS One 8:e82844

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acid Res 39:155–159

    Article  Google Scholar 

  • Ding YF, Tao YL, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Dong ZH, Shi L, Wang YW, Chen L, Cai ZM, Wang YN, Jin JB, Li X (2013) Identification and dynamic regulation of microRNAs involved in salt stress responses in functional soybean nodules by high-throughput sequencing. Int J Mol Sci 14:2717–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldem V, Celikkol Akcay U, Ozhuner E, Bakir Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One 7:e50298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldem V, Okay S, Unver T (2013) Plant microRNAs: new players in functional genomics. Turk J Agric For 37:1–21

    CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS One 2:e219

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang YJ, Xiong LZ (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) microRNAs and drought responses in sugarcane. Front Plant Sci 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossa BL, Zhao ZJ (2014) Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci USA 111:6190–6197

    Article  Google Scholar 

  • He GM, Luo XJ, Feng T, Li KG, Zhu ZF, Su W, Qian XY, Fu YC, Wang XK, Sun CQ, Yang JS (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollister JD (2014) Genomic variation in Arabidopsis: tools and insights from next-generation sequencing. Chromosom Res 22:103–115

    Article  CAS  Google Scholar 

  • Huang XH, Lu TT, Han B (2013) Resequencing rice genomes: an emerging new era of rice genomics. Trend Genet 29:225–232

    Article  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomic 10:493–507

    Article  CAS  Google Scholar 

  • Kantar M, Lucas SJ, Budak H (2011) miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233:471–484

    Article  CAS  PubMed  Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acid Res 42:D68–D73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krannich CT, Maletzki L, Kurowsky C, Horn R (2015) Network candidate genes in breeding for drought tolerant crops. Int J Mol Sci 16:16378–16400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Pathak H, Sharma SK, Kala YK, Nirjal MK, Singh GP, Goswami S, Rai RD (2015) Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Funct Integr Genomic 15:323–348

    Article  CAS  Google Scholar 

  • Lacape JM, Claverie M, Vidal RO, Carazzolle MF, Guimarães Pereira GA, Ruiz M, Pré M, Llewellyn D, Al-Ghazi Y, Jacobs J, Dereeper A, Huguet S, Giband M, Lanaud C (2012) Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton. PLoS One 7:e48855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li WB, Wang PP, Li YG, Zhang KX, Ding FQ, Nie TK, Yang X, Lv QX, Zhao L (2015) Identification of microRNAs in response to different day lengths in soybean using high-throughput sequencing and qRT-PCR. PLoS One 10:e0132621

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci USA 110:15485–15490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu TT, Yu SL, Fan DL, Mu J, Shangguan YY, Wang ZX, Minobe Y, Lin ZX, Han B (2008) Collection and comparative analysis of 1888 full-length cDNAs from wild rice Oryza rufipogon Griff. W1943. DNA Res 15:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61:3509–3517

    Article  CAS  PubMed  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1005566

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao DH, Yu L, Chen DZ, Li LY, Zhu YX, Xiao YQ, Zhang DC, Chen CY (2015) Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat. Theor Appl Genet 128:1359–1371

    Article  CAS  PubMed  Google Scholar 

  • Pandey R, Joshi G, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S (2014) A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum. PLoS One 9:e95800

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul S, Datta SK, Datta K (2015) miRNA regulation of nutrient homeostasis in plants. Front Plant Sci 6:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597

    Article  CAS  PubMed  Google Scholar 

  • Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Chung MY, Hur Y, Cho YG, Watanabe M, Nou IS (2015) Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genom 16:178

    Article  Google Scholar 

  • Saini S, Dongen HK, Enrigh SV (2008) miRBase: tools for microRNA genomics. Nucleic Acid Res 36:D154–D158

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai H, Itoh T (2010) Massive gene losses in Asian cultivated rice unveiled by comparative genome analysis. BMC Genom 11:121

    Article  Google Scholar 

  • Swamy BP, Kumar A (2013) Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv 31:1308–1318

    Article  CAS  PubMed  Google Scholar 

  • Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Unver T, Namuth-Covert DM, Budak H (2009) Review of current methodological approaches for characterizing microRNAs in plants. Int J Plant Genom 2009:262463

    Google Scholar 

  • Vashisht D, Nodine MD (2014) microRNA functions in plant embryos. Biochem Soc Trans 42:352–357

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Chen L, Zhao M, Tian Q, Zhang WH (2011) Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genom 12:367

    Article  CAS  Google Scholar 

  • Wei LY, Zhang DF, Xiang F, Zhang ZX (2009) Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. Int J Plant Sci 170:979–989

    Article  CAS  Google Scholar 

  • Wei B, Zhang RZ, Guo JJ, Liu DM, Li AL, Fan RC, Mao L, Zhang XQ (2014) Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon. PLoS One 9:e84781

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie KB, Wu CQ, Xiong LZ (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like tanscription factors and microRNA156 in rice. Plant Physiol 142:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Cock JH, Parao FT (1972) Physiological aspects of high yield. International Rice Research Institute. Rice Breed pp 455–469

  • Zhang XH, Zou Z, Zhang JH, Zhang YY, Han QQ, Hu TX, Xu XG, Liu H, Li HX, Ye ZB (2011) Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett 585:435–439

    Article  CAS  PubMed  Google Scholar 

  • Zhang FT, Cui FL, Zhang LX, Wen XF, Luo XD, Zhou Y, Li X, Wan Y, Zhang JE, Xie JK (2014) Development and identification of a introgression line with strong drought resistance at seedling stage derived from Oryza sativa L. mating with Oryza rufipogon Griff. Euphytica 200:1–7

    Article  CAS  Google Scholar 

  • Zhang YJ, Wang W, Chen J, Liu JB, Xia MX, Shen FF (2015) Identification of miRNAs and their targets in cotton inoculated with verticillium dahliae by high-throughput sequencing and degradome analysis. Int J Mol Sci 16:14749–14768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shannon R M Pinson (USDA-ARS Dale Bumpers National Rice Research Center, USA) for her advice and revision during preparation of the manuscript. This research was partially supported by the National Natural Science Foundation of China (31201191 and 31360327), the Natural Science Foundation of Jiangxi Province, China (20132BAB214009 and 20142BAB204012) and the Foundation of Jiangxi Educational Committee (GJJ14248).

Supporting information

Supplementary Table 1—Sequences of primers used for stem-loop qRT-PCR

Supplementary Table 2—Distribution of small RNA among 11 different categories for the control and drought stress-treatment libraries

Supplementary Table 3—Conserved miRNA identified by high-throughput sequencing in the control (DY_N) and drought stress-treatment (DY_D) libraries

Supplementary Table 4—The target genes of the drought stress-responsive miRNA

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankun Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Luo, X., Zhou, Y. et al. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.). Biotechnol Lett 38, 711–721 (2016). https://doi.org/10.1007/s10529-015-2012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-2012-0

Keywords

Navigation