Skip to main content

Advertisement

Log in

Application of RNAi technology: a novel approach to navigate abiotic stresses

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Due to the rising population globally, and the demand for food, it is critical to significantly increase crop production by 2050. However, climate change estimates show that droughts and heatwaves will become more prevalent in many parts of the world, posing a severe danger to food output.

Methods

Selective breeding based on genetic diversity is falling short of meeting the expanding need for food and feed. However, the advent of modern plant genetic engineering, genome editing, and synthetic biology provides precise techniques for producing crops capable of sustaining yield under stress situations.

Results

As a result, crop varieties with built-in genetic tolerance to environmental challenges are desperately needed. In the recent years, small RNA (sRNA) data has progressed to become one of the most effective approaches for the improvement of crops. So many sRNAs (18-30nt) have been found with the use of hi-tech bioinformatics and sequencing techniques which are involved in the regulation of sequence specific gene noncoding RNAs (short ncRNAs) i.e., microRNA (miRNA) and small interfering RNA (siRNA). Such research outcomes may advance our understanding of the genetic basis of adaptability of plants to various environmental challenges and the genetic variation of plant's tolerance to a number of abiotic stresses.

Conclusion

The review article highlights current trends and advances in sRNAs’ critical role in responses of plants to drought, heat, cold, and salinity, and also the potential technology that identifies the abiotic stress-regulated sRNAs, and techniques for analyzing and validating the target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

DICER:

Dicer-LIKE enzyme

DNA:

De-oxy ribonucleic acid

mRNA:

Messenger RNA

RISC:

RNA-induced silencing complex

sRNA:

Small RNA

ROS:

Reactive oxygen species

RdRP:

RNA dependent RNA polymers

References

  1. Mickelbart MV, Paul MH, Bailey-Serre J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  2. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Acad Sci 111(9):3268–3273

    Article  CAS  Google Scholar 

  3. Younis A, Siddique MI, Kim CK, Lim KB (2014) RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding. Int J Biol Sci 10(10):1150

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saurabh S, Vidyarthi AS, Prasad D (2014) RNA interference: concept to reality in crop improvement. Planta 239(3):543–564

    Article  CAS  PubMed  Google Scholar 

  5. Rocheleau CE, Downs WD, Lin R, Wittman C, Bei Y, Cha YH, Mello CC (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90(4):707–716

    Article  CAS  PubMed  Google Scholar 

  6. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  7. Koch A, Kogel KH (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J 12:821–831. https://doi.org/10.1111/pbi.12226

    Article  CAS  PubMed  Google Scholar 

  8. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150

    Article  CAS  PubMed  Google Scholar 

  9. Fire A (1998) Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  10. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296. https://doi.org/10.1038/35005107

    Article  CAS  PubMed  Google Scholar 

  11. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for bidentate ribnuclease in the initiation site of RNA interference. Nature 409:363–366. https://doi.org/10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  12. Hamilton AJ, Baulcombe DC (1999) A novel species of small antisense RNA in posttranscriptional gene silencing. Science 286:950–952. https://doi.org/10.1126/science.286.5441.950

    Article  CAS  PubMed  Google Scholar 

  13. Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci 97(21):11650–11654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6(22):3343–3353

    Article  CAS  PubMed  Google Scholar 

  15. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pare JM, Hobman TC (2007) Dicer: structure, function and role in RNA-dependent gene-silencing pathways. In: Polaina J (ed) Industrial enzymes. Springer, Dordrecht, pp 421–438

    Chapter  Google Scholar 

  17. Riley KJ, Yario TA, Steitz JA (2012) Association of Argonaute proteins and microRNAs can occur after cell lysis. RNA 18(9):1581–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta (BBA) 2:137–148

    Article  Google Scholar 

  19. Liu S, Geng S, Li A, Mao Y, Mao L (2021) RNAi technology for plant protection and its application in wheat. aBIOTECH 2:365–374. https://doi.org/10.1007/s42994-021-00036-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhardwaj R, Ohri P, Kaur R, Rattan A, Kapoor D, Bali S, Singh R (2014) Gene silencing: a novel cellular defense mechanism improving plant productivity under environmental stresses. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, Cambridge, pp 209–228

    Chapter  Google Scholar 

  21. Malphettes L, Fussenegger M (2005) Impact of RNA interference on gene networks. Metab Eng 8:672–683

    Article  Google Scholar 

  22. Mohamed HI, Akladious SA (2014) Influence of garlic extract on enzymatic and non enzymatic antioxidants in soybean plants (Glycine max) grown under drought stress. Life Sci J 11(3s):46–58

    Google Scholar 

  23. Mohamed HI, Abd-El-Hameed AG (2014) Molecular and biochemical markers of some Vicia faba L. genotype in response to storage insect pests infestation. J Plant Int 9(1):618–626

    CAS  Google Scholar 

  24. Abd El- Rahman SS, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36(2):343–354

    Article  CAS  Google Scholar 

  25. Begum Y (2022) Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 821:146283

    Article  CAS  PubMed  Google Scholar 

  26. Tiwari R, Rajam MV (2022) RNA-and miRNA-interference to enhance abiotic stress tolerance in plants. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-022-00770-9

    Article  Google Scholar 

  27. Sofy MR, Mohamed HI, Dawood MFA, Abu-Elsaoud AM, Soliman MH (2021) Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2021.1949709

    Article  Google Scholar 

  28. Ghonaim MM, Mohamed HI, Omran AAA (2021) Evaluation of wheat salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68:227–242

    Article  CAS  Google Scholar 

  29. Xu T, Zhang L, Yang Z, Wei Y, Dong T (2021) Identification and functional characterization of plant MiRNA under salt stress shed light on salinity resistance improvement through MiRNA manipulation in crops. Front Plant Sci 12:665439. https://doi.org/10.3389/fpls.2021.665439

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9:1337–1340

    Article  CAS  PubMed  Google Scholar 

  32. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    Article  CAS  PubMed  Google Scholar 

  33. Mohamed HI, Akladious SA, Ashry NA (2018) Evaluation of water stress tolerance of soybean using physiological parameters and retrotransposon-based markers. Gesunde Pflanz 70:205–215

    Article  CAS  Google Scholar 

  34. Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F (2012) Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol 169(16):1664–1672

    Article  CAS  PubMed  Google Scholar 

  35. Ferdous J, Hussain SS, Shi BJ (2015) Role of micro RNA s in plant drought tolerance. Plant Biotechnol J 13(3):293–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khare T, Shriram V, Kumar V (2018) RNAi technology: the role in development of abiotic stress-tolerant crops. In: Hussain WM (ed) Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Academic Press, Cambridge, pp 117–133

    Chapter  Google Scholar 

  37. Wang L, Liu H, Li D, Chen H (2011) Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC Genomics 12:154. https://doi.org/10.1186/1471-2164-12-154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M (2018) Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 13:e0193517

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  40. Akdogan G, Tufekci ED, Uranbey S, Unver T (2016) miRNA-based drought regulation in wheat. Funct Integr Genomics 16(3):221–233

    Article  CAS  PubMed  Google Scholar 

  41. Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  42. Jian X, Zhang L, Li G, Zhang L, Wang X, Cao X et al (2010) Identification of novel stress-regulated microRNAs from Oryza sativa L. Genomics 95:47–50. https://doi.org/10.1016/j.ygeno.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  43. Zhou M, Luo H (2014) Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav 9:1375–1391. https://doi.org/10.4161/psb.28700

    Article  CAS  Google Scholar 

  44. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  45. Li DH, Hui LIU, Yang YL, Zhen PP, Liang JS (2009) Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice. Rice Sci 16(1):14–20

    Article  Google Scholar 

  46. Park GG, Park JJ, Yoon J, Yu SN, An G (2010) A RING finger E3 ligase gene, Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74:467–478

    Article  CAS  PubMed  Google Scholar 

  47. Arshad M, Feyissa BA, Amyot L, Aung Band Hannoufa A (2017) MicroRNA156 improves drought stress tolerance in alfalfa (Medicago sativa) by silencing SPL13. Plant Sci 258:122–136

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Beaith M, Chalifoux M, Ying J, Uchacz T, Sarvcs C, Griffiths R, Kuzma M, Wan J, Huang Y (2009) Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Mol Plant 2:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohamed HI, Ashry NA, Ghonaim MM (2019) Physiological analysis for heat shock induced biochemical (responsive) compounds and molecular characterizations of ESTs expressed for heat tolerance in some Egyptian maize hybrids. Gesunde Pflanz 71:213–222

    Article  CAS  Google Scholar 

  50. Mohamed HI, Abdel-Hamid AME (2013) Molecular and biochemical studies for heat tolerance on four cotton genotypes (Gossypium hirsutum L.). Roman Biotechnol Lett 18(6):7223–7231

    Google Scholar 

  51. Cao X, Wu Z, Jiang F, Zhou R, Yang Z (2014) Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics 15:1130. https://doi.org/10.1186/1471-2164-15-1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanyam D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68(9):2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Sun Q (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11(1):1–13

    Article  Google Scholar 

  54. Liu J, Feng L, Li J, He Z (2015) Genetic and epigenetic control of plant heat responses. Front Plant Sci 6:267

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X (2017) microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J 91:977–994

    Article  CAS  PubMed  Google Scholar 

  56. Lin JS, Kuo CC, Yang IC, Tsai WA, Shen YH, Lin CC, Liang YC, Li YC, Kuo YW, King YC, Lai HM (2018) MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG Jr, Liu H, Li S, Luo H (2019) Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J 17:233–251

    Article  CAS  PubMed  Google Scholar 

  58. Shi X, Jiang F, Wen J, Wu Z (2019) Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). BMC Plant Biol 19:214

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kushawaha AK, Khan A, Sopory SK, Sanan-Mishra N (2021) Priming by high temperature stress induces microRNA regulated heat shock modules indicating their involvement in thermopriming response in rice. Life (Basel) 11:291

    CAS  Google Scholar 

  60. Jha Y, Mohamed HI (2022) Inoculation with Lysinibacillus fusiformis strain YJ4 and Lysinibacillus sphaericus strain YJ5 alleviates the effects of cold stress in maize plants. Gesunde Pflanz. https://doi.org/10.1007/s10343-022-00666-7

    Article  Google Scholar 

  61. Pagano L, Rossi R, Paesano L, Marmiroli N, Marmiroli M (2021) RNA regulation and stress adaptation in plants. Environ Exp Bot 184:104369

    Article  CAS  Google Scholar 

  62. Xu JM, Zhang G, Liu XY, Hou X (2016) Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings. Plant Physiol Biochem 109:561–570

    Article  CAS  PubMed  Google Scholar 

  63. Li HY et al (2011) Characterization of the stress associated microRNAs in Glycine max by deep sequencing. BMC Plant Biol. https://doi.org/10.1186/1471-2229-11-170

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459(1–2):39–47

    Article  CAS  PubMed  Google Scholar 

  65. Jeong DH (2016) Functional diversity of microRNA variants in plants. J Plant Biol 59:303–310

    Article  CAS  Google Scholar 

  66. Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y et al (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang C, Li D, Mao D, Liu X, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218

    Article  CAS  PubMed  Google Scholar 

  68. Wang ST, Sun XL, Hoshino Y, Yu Y, Jia B, Sun ZW, Sun MZ, Duan XB, Zhu YM (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS ONE 9:e91357

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Wang W, Wang M, Zhang HY, Liu JH (2016) The miR396b of Poncirus trifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene–polyamine homeostasis. Plant Cell Physiol 57:1865–1878

    Article  CAS  PubMed  Google Scholar 

  70. Zhou M, Tang W (2019) MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells. Mol Genet Genomics 294:379–393

    Article  CAS  PubMed  Google Scholar 

  71. El-Mahdy OM, Mohamed HI, Mogazy AM (2021) Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd and Pb contaminated soil and their physiological effects on Vicia faba L. Environ Sci Pollut Res 28(47):67608–67631

    Article  CAS  Google Scholar 

  72. Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2022) Biosorptive removal of cadmium ions from hydroponic solution with indigenous garlic peel and mercerized garlic peel on lettuce productivity. Sci Hortic 293:110–727

    Article  Google Scholar 

  73. Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNAs in metal stress: specific roles or secondary responses? Int J Mol Sci 13:15826–15847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shen C, Huang YY, He CT, Zhou Q, Chen JX, Tan X, Mubeen S, Yuan JG, Yang ZY (2017) Comparative analysis of cadmium responsive microRNAs in roots of two Ipomoea aquatica Forsk. cultivars with different cadmium accumulation capacities. Plant Physiol Biochem 111:329–339

    Article  CAS  PubMed  Google Scholar 

  75. Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63(12):4597–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35(1):86–99

    Article  PubMed  Google Scholar 

  77. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187(3):805–818

    Article  PubMed  Google Scholar 

  78. Srivastava S, Srivastava AK, Suprasanna P, D’souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64(1):303–315

    Article  CAS  PubMed  Google Scholar 

  79. Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. J Agric Food Chem 60(26):6524–6536

    Article  CAS  PubMed  Google Scholar 

  80. Noman A, Sanaullah T, Khalid N, Islam W, Khan S, Irshad MK, Aqeel M (2019) Crosstalk between plant miRNA and heavy metal toxicity. In: Sablok G (ed) Plant metallomics and functional omics. Springer, Cham, pp 145–168

    Chapter  Google Scholar 

  81. Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177:1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ahmad G, Khan AA, Mohamed HI (2021) Acid rain deposition modulates growth, yield, photosynthetic pigments, biochemical substances, oxidative damage and antioxidant activities in pumpkin (Cucurbita moschata). Gesunde Pflanz 73:623–637

    Article  CAS  Google Scholar 

  83. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng LL, Qu LH (2015) Application of micro RNA gene resources in the improvement of agronomic traits in rice. Plant Biotechnol J 13(3):329–336

    Article  CAS  PubMed  Google Scholar 

  85. Qiu Z, He Y, Zhang Y, Guo J, Wang L (2018) Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress. Ecotoxicol Environ Saf 164:611–617

    Article  CAS  PubMed  Google Scholar 

  86. Wang W, Liu D, Chen D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F (2019) MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol 16(3):362–375

    Article  PubMed  PubMed Central  Google Scholar 

  87. Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP, Amato A (2020) Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS ONE 15(4):e0230958

    Article  PubMed  PubMed Central  Google Scholar 

  88. Singh S, Kumar A, Panda D, Modi MK, Sen P (2020) Identification and characterization of drought responsive miRNAs from a drought tolerant rice genotype of Assam. Plant Gene 21:100213

    Article  CAS  Google Scholar 

  89. Zhang X, Wang W, Wang M, Zhang HY, Liu JH (2016) The miR396b of Poncirus trifoliate functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene-polyamine homeostasis. Plant Cell Physiol 57(9):1865–1878

    Article  CAS  PubMed  Google Scholar 

  90. Sun M, Shen Y, Yang J, Cai X, Li H, Zhu Y, Jia B, Sun X (2020) miR535 negatively regulates cold tolerance in rice. Mol Breed 40(14):1–12

    Google Scholar 

  91. Dawood MF, Abu-Elsaoud AM, Sofy MR, Mohamed HI, Soliman MH (2022) Appraisal of kinetin spraying strategy to alleviate the deleterious effects of UV-C stress on tomato plants. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19378-6

    Article  Google Scholar 

  92. Tossi VE, Regalado JJ, Iannicelli J, Laino LE, Burrieza HP, Escandón AS, Pitta-Álvarez SI (2019) Beyond Arabidopsis: differential UV-B response mediated by UVR8 in diverse species. Fron Plant Sci 10:780

    Article  Google Scholar 

  93. Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Sys Biol 3(1):103

    Article  Google Scholar 

  94. Wang B, Sun YF, Song N, Wang XJ, Feng H, Huang LL, Kang ZS (2013) Identification of UV-B-induced microRNAs in wheat. Genet Mol Res 12(4):4213–4221

    Article  CAS  PubMed  Google Scholar 

  95. Sunitha S, Loyola R, Alcalde JA, Arce-Johnson P, Matus JT, Rock CD (2019) The role of UV-B light on small RNA activity during grapevine berry development. G3 (Bethesda) 9:769–787

    Article  CAS  Google Scholar 

  96. Yang Y, Guo J, Cheng J, Jiang Z, Xu N, An X, Chen Z, Hao J, Yang S, Xu Z, Shen C (2020) Identification of UV-B radiation responsive microRNAs and their target genes in chrysanthemum (Chrysanthemum morifolium Ramat) using high-throughput sequencing. Ind Crops Prod 151:112–484

    Article  Google Scholar 

  97. Tian L, Li J, Bi W, Zuo S, Li L, Li W et al (2019) Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions. Agric Water Manag 218:250–258. https://doi.org/10.1016/j.agwat.2019.03.054

    Article  Google Scholar 

  98. Jin Q, Jiang Y, Fu L, Zheng Y, Ding Y, Liu Q (2020) Wenxin granule ameliorates hypoxia/reoxygenation-induced oxidative stress in mitochondria via the PKC-δ/NOX2/ROS pathway in H9c2 cells. Oxid Med Cell Longev 2020:3245483. https://doi.org/10.1155/2020/3245483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W et al (2020) Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Biochem 148:228–236. https://doi.org/10.1016/j.plaphy.2020.01.020

    Article  CAS  PubMed  Google Scholar 

  100. Licausi F, Weits DA, Pant BD, Scheible WR, Geigenberger P, van Dongen JT (2011) Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytol 190:442–456. https://doi.org/10.1111/j.1469-8137.2010.03451.x

    Article  CAS  PubMed  Google Scholar 

  101. Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177

    Article  CAS  PubMed  Google Scholar 

  102. Hou Y, Jiang F, Zheng X, Wu Z (2019) Identification and analysis of oxygen responsive microRNAs in the root of wild tomato (S. habrochaites). BMC Plant Biol 19:100

    Article  PubMed  PubMed Central  Google Scholar 

  103. Loreti E, Betti F, Ladera-Carmona MJ, Fontana F, Novi G, Valeri MC, Perata P (2020) ARGONAUTE1 and ARGONAUTE4 regulate gene expression and hypoxia tolerance. Plant Physiol 182(1):287–300

    Article  CAS  PubMed  Google Scholar 

  104. Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D (2017) Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifer Gaertn). Front Plant Sci 8:6

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sunkar R, Zhu JK (2004) Novel and stress regulated micro RNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. https://doi.org/10.1105/tpc.104.022830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19(5):517–529

    Article  CAS  PubMed  Google Scholar 

  107. Kumar J, Jain K, Kumari P, Mohanty A, Rajani K, Kumar RR, Ranjan T (2020) RNA interference: an overview. In: Kin-Ying T (ed) Genetic transformation in crops. Intech Open, London

    Google Scholar 

  108. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  PubMed Central  Google Scholar 

  109. Choudhuri S (2009) Lesser-known relatives of miRNA. Biochem Biophys Res Commun 388(2):177–180

    Article  CAS  PubMed  Google Scholar 

  110. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133(1):128–141

    Article  CAS  PubMed  Google Scholar 

  111. Luo QJ, Mittal A, Jia F, Rock CD (2012) An autoregulatory feedback loop involvingPAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol Biol 80(1):117–129

    Article  CAS  PubMed  Google Scholar 

  112. Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21(8):798–804

    Article  CAS  PubMed  Google Scholar 

  113. Jin H, Vacic V, Girke T, Lonardi S, Zhu JK (2008) Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol 9(1):1–13

    Article  Google Scholar 

  114. Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6(4):30

    Article  CAS  Google Scholar 

  115. Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13(3):1–16

    Article  Google Scholar 

  116. Talmor-Neiman M, Stav R, Frank W, Voss B, Arazi T (2006) Novel micro-RNAs and intermediates of micro-RNA biogenesis from moss. Plant J 47:25–37

    Article  CAS  PubMed  Google Scholar 

  117. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36:1282–1290

    Article  CAS  PubMed  Google Scholar 

  118. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  119. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  CAS  PubMed  Google Scholar 

  120. Naeem M, Basit A, Ahmad I, Mohamed HI, Wasila H (2020) Effect of salicylic acid and salinity stress on the performance of tomato. Gesunde Pflanz 72:393–402

    Article  CAS  Google Scholar 

  121. Tiwari R, Rajam MV (2022) RNA- and miRNA-interference to enhance abiotic stress tolerance in plants. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-022-00770-9

    Article  Google Scholar 

  122. Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2018) Knockdown of an inflorescence meristem-specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ 41:936–946

    Article  CAS  PubMed  Google Scholar 

  123. Huang L, Wang Y, Wang W, Zhao X, Qin Q et al (2018) Characterization of transcription factor gene OsDRAP1 conferring drought tolerance in rice. Front Plant Sci 9:94

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hu Y, Wu Q, Peng Z, Sprague SA, Wang W, Park J, Akhunov E, Jagadish KS, Nakata PA, Cheng N, Hirschi KD (2017) Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Sci Rep 7(1):1–14

    Article  Google Scholar 

  125. Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu JK, Sun Q (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genom 10:187–190

    Article  CAS  Google Scholar 

  126. Yu Z, Wang X, Mu X, Zhang L (2019) RNAi mediated silencing of dehydrin gene WZY2 confers osmotic stress intolerance in transgenic wheat. Funct Plant Biol 46:877–884

    Article  CAS  PubMed  Google Scholar 

  127. Zuo ZF, He W, Li J, Mo B, Liu L (2021) Small RNAs: the essential regulators in plant thermotolerance. Front Plant Sci 12:726762. https://doi.org/10.3389/fpls.2021.726762

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119. https://doi.org/10.1038/nature09861

    Article  CAS  PubMed  Google Scholar 

  129. Zhong SH, Liu JZ, Jin H, Lin L, Li Q, Chen Y et al (2013) Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci USA 110:9171–9176. https://doi.org/10.1073/pnas.1219655110

    Article  PubMed  PubMed Central  Google Scholar 

  130. Li S, Liu J, Liu Z, Li X, Wu F, He Y (2014) Heat-induced TAS1 TARGET1 mediates thermotolerance via heat stress transcription factor A1a-directed pathways in Arabidopsis. Plant Cell 26:1764–1780. https://doi.org/10.1105/tpc.114.124883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16:3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li JC, Guo JB, Xu WZ, Ma M (2007) RNA interference-mediated silencing of phytochelatin synthase gene reduce cadmium accumulation in rice seeds. J Integr Plant Biol 49:1032–1037

    Article  CAS  Google Scholar 

  133. Yamazaki S, Ueda Y, Mukai A, Ochiai K, Matoh T (2018) Rice phytochelatin synthases Os PCS 1 and Os PCS 2 make different contributions to cadmium and arsenic tolerance. Plant Direct 2:e00034

    Article  PubMed  PubMed Central  Google Scholar 

  134. Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2018) Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice. Plant Mol Biol 98:101–120

    Article  CAS  PubMed  Google Scholar 

  135. Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157:242–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169:576–593

    Article  PubMed  PubMed Central  Google Scholar 

  137. Xu R, Wang Y, Zheng H, Lu W, Wu C, Huang J, Yan K, Yang G, Zheng C (2015) Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot 66:5997–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Goswami K, Mittal D, Gautam B, Sopory SK, Sanan-Mishra N (2020) Mapping the salt stress-induced changes in the root miRNome in pokkali rice. Biomolecules 10(4):498

    Article  CAS  PubMed Central  Google Scholar 

  139. Parmar S, Gharat SA, Tagirasa R, Id TC (2020) Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS ONE 15(4):e0230958

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xu J, Chen Q, Liu P, Jia W, Chen Z, Xu Z (2019) Integration of mRNA and miRNA analysis reveals the molecular mechanism underlying salt and alkali stress tolerance in tobacco. J Mol Sci 20(10):2391

    Article  Google Scholar 

  141. Luan M, Xu M, Lu Y, Zhang Q, Zhang L, Zhang C, Fan Y, Lang Z, Wang L (2014) Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PLoS ONE 9:e91369

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555:186–193

    Article  CAS  PubMed  Google Scholar 

  143. Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20(2):88–98

    Article  CAS  PubMed  Google Scholar 

  144. Yin F, Gao J, Liu M, Qin C, Zhang W, Yang A (2014) Genome-wide analysis of Water-stress-responsive microRNA expression profile in tobacco roots. Funct Integr Genom 14:319–332

    Article  CAS  Google Scholar 

  145. Fard EM, Bakhshi B, Keshavarznia R, Nikpay N, Shahbazi M, Salekdeh GH (2017) Drought responsive microRNAs in two barley cultivars differing in their level of sensitivity to drought stress. Plant Physiol Biochem 118:121–129

    Article  CAS  PubMed  Google Scholar 

  146. Yu Y, Ni Z, Wang Y, Wan H, Hu Z, Jiang Q, Sun X, Zhang H (2019) Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci 285:68–78

    Article  CAS  PubMed  Google Scholar 

  147. Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR 398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74:840–851

    Article  CAS  PubMed  Google Scholar 

  148. Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom 13:1–11

    Article  Google Scholar 

  149. Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187

    Article  CAS  PubMed  Google Scholar 

  150. Wang B, Sun Y, Fei SN, Wei JP, Wang XJ, Feng H, Yin Y, Kang ZS (2014) MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80:90–96

    Article  CAS  PubMed  Google Scholar 

  151. Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W (2018) Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biol 18:52

    Article  PubMed  PubMed Central  Google Scholar 

  152. Pandey C, Raghuram B, Sinha AK, Gupta M (2015) miRNA plays a role in the antagonistic effect of selenium on arsenic stress in rice seedlings. Metallomics 7(5):857–866

    Article  CAS  PubMed  Google Scholar 

  153. Wang Y, Liu W, Shen H, Zhu X, Zhai L, Xu L, Wang R, Gong Y, Limera C, Liu L (2015) Identification of radish (Raphanus sativus L.) miRNAs and their target genes to explore miRNA- mediated regulatory networks in lead (Pb) stress responses by high-throughput sequencing and degradome analysis. Plant Mol Biol Rep 33(3):358–376

    Article  CAS  Google Scholar 

  154. Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177(4):1691–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Qiu Z, Hai B, Guo J, Li Y, Zhang L (2016) Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol Biochem 101:60–67

    Article  CAS  PubMed  Google Scholar 

  156. Zhang L, Ding H, Jiang H, Wang H, Chen K, Duan J, Feng S, Wu G (2019) Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis. Chemosphere 242:125168

    Article  PubMed  Google Scholar 

  157. Araki R, Mermoda M, Yamasaki H, Kamiya T, FujiwaraT ST (2018) SPL7 locally regulates copper-homeostasis-related genes in Arabidopsis. J Plant Physiol 224:137–143

    Article  PubMed  Google Scholar 

  158. Gao J, Luo M, Peng H, Chen F, Li W (2019) Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots. BMC Mol Biol 20:14–19

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kouhi F, Sorkheh K, Ercisli S, Kumar K (2020) MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower. PLoS ONE 15(2):e0228850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pandey AK, Gedda MR, Verma AK (2020) Effect of arsenic stress on expression pattern of a rice specific miR156j at various developmental stages and their allied coexpression target networks. Front Plant Sci 11:752

    Article  PubMed  PubMed Central  Google Scholar 

  161. Sunitha S, Loyola R, Alcalde JA, Arce-Johnson P, Matus JT, Rock CD (2019) The Role of UV-B light on small RNA activity during grapevine berry development. G3 (Bethesda. Md.) 9(3):769–787

    Article  CAS  Google Scholar 

  162. Gong J, Li D, Li H, Zhou H, Xu J (2019) Identification of manganese-responsive microRNAs in Arabidopsis by small RNA sequencing. Czech J Genet Plant Breed 55(2):76–82

    Article  CAS  Google Scholar 

  163. Pan J, Huang D, Guo Z, Kuang Z, Zhang HE, Xie X, Ma Z, Gao S, Lerdau MT, Chu C, Li L (2018) Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integr Plant Biol 60(4):323–340

    Article  CAS  PubMed  Google Scholar 

  164. Guo F, Han N, Xie Y, Fang K, Yang Y, Zhu M, Wang J, Bian H (2016) The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant Cell Environ 39(10):2288–2302

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AB, IU, HIM: conceived, designed and wrote the original draft, AB, EARK, HIM, STS, IU, MS: contributed to materials, tools, and revised the manuscript, HIM: reviewed and editing the manuscript. All authors agree to submit the review.

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, I., Kamel, E.A.R., Shah, S.T. et al. Application of RNAi technology: a novel approach to navigate abiotic stresses. Mol Biol Rep 49, 10975–10993 (2022). https://doi.org/10.1007/s11033-022-07871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07871-7

Keywords

Navigation