Skip to main content

Advertisement

Log in

Effects of Agmatine on Depressive-Like Behavior Induced by Intracerebroventricular Administration of 1-Methyl-4-phenylpyridinium (MPP+)

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Considering that depression is a common non-motor comorbidity of Parkinson’s disease and that agmatine is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system disorders, this study investigated the antidepressant-like effect of agmatine in mice intracerebroventricularly (i.c.v.) injected with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Male C57BL6 mice were treated with agmatine (0.0001, 0.1 or 1 mg/kg) and 60 min later the animals received an i.c.v. injection of MPP+ (1.8 µg/site). Twenty-four hours after MPP+ administration, immobility time, anhedonic behavior, and locomotor activity were evaluated in the tail suspension test (TST), splash test, and open field test, respectively. Using Western blot analysis, we investigated the putative modulation of MPP+ and agmatine on striatal and frontal cortex levels of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). MPP+ increased the immobility time of mice in the TST, as well as induced an anhedonic-like behavior in the splash test, effects which were prevented by pre-treatment with agmatine at the three tested doses. Neither drug, alone or in combination, altered the locomotor activity of mice. I.c.v. administration of MPP+ increased the striatal immunocontent of TH, an effect prevented by the three tested doses of agmatine. MPP+ and agmatine did not alter the immunocontent of BDNF in striatum and frontal cortex. These results demonstrate for the first time the antidepressant-like effects of agmatine in an animal model of depressive-like behavior induced by the dopaminergic neurotoxin MPP+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler CH (2005) Nonmotor complications in Parkinson’s disease. Mov Disord 20(Suppl 11):S23–S29

    Article  PubMed  Google Scholar 

  • Ballanger B, Klinger H, Eche J, Lerond J, Vallet AE, Le Bars D, Tremblay L, Sgambato-Faure V, Broussolle E, Thobois S (2012) Role of serotonergic 1A receptor dysfunction in depression associated with Parkinson’s disease. Mov Disord 27:84–89

    Article  PubMed  CAS  Google Scholar 

  • Bassani TB, Gradowski RW, Zaminelli T, Barbiero JK, Santiago RM, Boschen SL, da Cunha C, Lima MM, Andreatini R, Vital MA (2014) Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson’s disease model in rats. Brain Res 1593:95–105

    Article  PubMed  CAS  Google Scholar 

  • Berghauzen-Maciejewska K, Kuter K, Kolasiewicz W, Glowacka U, Dziubina A, Ossowska K, Wardas J (2014) Pramipexole but not imipramine or fluoxetine reverses the “depressive-like” behaviour in a rat model of preclinical stages of Parkinson’s disease. Behav Brain Res 271:343–353

    Article  PubMed  CAS  Google Scholar 

  • Berghauzen-Maciejewska K, Wardas J, Kosmowska B, Glowacka U, Kuter K, Ossowska K (2015) Alterations of BDNF and trkB mRNA expression in the 6-hydroxydopamine-induced model of preclinical stages of Parkinson’s disease: an influence of chronic pramipexole in rats. PLoS One 10:e0117698

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodis-Wollner I (2003) Neuropsychological and perceptual defects in Parkinson’s disease. Parkinsonism Relat Disord 9(Suppl 2):S83–S89

    Article  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  • Brown AS, Gershon S (1993) Dopamine and depression. J Neural Transm 91:75–109

    Article  CAS  Google Scholar 

  • Budni J, Gadotti VM, Kaster MP, Santos AR, Rodrigues AL (2007) Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test. Eur J Pharmacol 575:87–93

    Article  PubMed  CAS  Google Scholar 

  • Castro AA, Wiemes BP, Matheus FC, Lapa FR, Viola GG, Santos AR, Tasca CI, Prediger RD (2013) Atorvastatin improves cognitive, emotional and motor impairments induced by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats, an experimental model of Parkinson’s disease. Brain Res 1513:103–116

    Article  PubMed  CAS  Google Scholar 

  • Chiu CC, Yeh TH, Lai SC, Wu-Chou YH, Chen CH, Mochly-Rosen D, Huang YC, Chen YJ, Chen CL, Chang YM, Wang HL, Lu CS (2015) Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp Neurol 263:244–253

    Article  PubMed  CAS  Google Scholar 

  • Fahn S (2003) Description of Parkinson’s disease as a clinical syndrome. Ann NY Acad Sci 991:1–14

    Article  PubMed  CAS  Google Scholar 

  • Freitas AE, Bettio LE, Neis VB, Moretti M, Ribeiro CM, Lopes MW, Leal RB, Rodrigues AL (2014a) Sub-chronic agmatine treatment modulates hippocampal neuroplasticity and cell survival signaling pathways in mice. J Psychiatr Res 58:137–146

    Article  PubMed  Google Scholar 

  • Freitas AE, Bettio LE, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues AL (2014b) Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Biol Psychiatry 50:143–150

    Article  PubMed  CAS  Google Scholar 

  • Freitas AE, Egea J, Buendia I, Navarro E, Rada P, Cuadrado A, Rodrigues AL, Lopez MG (2014c) Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line. Mol Neurobiol 51(3):1504–1519

    Article  PubMed  Google Scholar 

  • Freitas AE, Egea J, Buendia I, Gomez-Rangel V, Parada E, Navarro E, Casas AI, Wojnicz A, Ortiz JA, Cuadrado A, Ruiz-Nuno A, Rodrigues AL, Lopez MG (2015) Agmatine, by improving neuroplasticity markers and inducing Nrf2, prevents corticosterone-induced depressive-like behavior in mice. Mol Neurobiol. doi:10.1007/s12035-015-9182-6

    Google Scholar 

  • Gilad GM, Gilad VH (2000) Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Lett 296:97–100

    Article  PubMed  CAS  Google Scholar 

  • Gilad GM, Gilad VH, Finberg JP, Rabey JM (2005) Neurochemical evidence for agmatine modulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Neurochem Res 30:713–719

    Article  PubMed  CAS  Google Scholar 

  • Haile CN, Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Foulkes A, Iqbal S, Mahoney JJ 3rd, De La Garza R 2nd, Charney DS, Newton TF, Mathew SJ (2014) Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol 17:331–336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12:12–15

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hantz P, Caradoc-Davies G, Caradoc-Davies T, Weatherall M, Dixon G (1994) Depression in Parkinson’s disease. Am J Psychiatry 151:1010–1014

    Article  PubMed  CAS  Google Scholar 

  • He YY, Zhang XY, Yung WH, Zhu JN, Wang JJ (2013) Role of BDNF in central motor structures and motor diseases. Mol Neurobiol 48:783–793

    Article  PubMed  CAS  Google Scholar 

  • Heinz A, Schmidt LG, Reischies FM (1994) Anhedonia in schizophrenic, depressed, or alcohol-dependent patients–neurobiological correlates. Pharmacopsychiatry 27(Suppl 1):7–10

    Article  PubMed  Google Scholar 

  • Hui J, Zhang J, Kim H, Tong C, Ying Q, Li Z, Mao X, Shi G, Yan J, Zhang Z, Xi G (2014) Fluoxetine regulates neurogenesis in vitro through modulation of GSK-3beta/beta-catenin signaling. Int J Neuropsychopharmacol. doi:10.1093/ijnp/pyu099

    PubMed  Google Scholar 

  • Itano Y, Kitamura Y, Nomura Y (1995) Biphasic effects of MPP+, a possible parkinsonism inducer, on dopamine content and tyrosine hydroxylase mRNA expression in PC12 cells. Neurochem Int 26:165–171

    Article  PubMed  CAS  Google Scholar 

  • Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jourdi H, Hamo L, Oka T, Seegan A, Baudry M (2009) BDNF mediates the neuroprotective effects of positive AMPA receptor modulators against MPP+-induced toxicity in cultured hippocampal and mesencephalic slices. Neuropharmacology 56:876–885

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaku K, Shikimi T, Kamisaki Y, Shinozuka K, Ishino H, Okunishi H, Takaori S (1999) Elevation of striatal interleukin-6 and serum corticosterone contents in MPTP-treated mice. Clin Exp Pharmacol Physiol 26:680–683

    Article  PubMed  CAS  Google Scholar 

  • Kim DJ, Kim DI, Lee SK, Suh SH, Lee YJ, Kim J, Chung TS, Lee JE (2006) Protective effect of agmatine on a reperfusion model after transient cerebral ischemia: temporal evolution on perfusion MR imaging and histopathologic findings. AJNR Am J Neuroradiol 27:780–785

    PubMed  CAS  Google Scholar 

  • Kozina EA, Khakimova GR, Khaindrava VG, Kucheryanu VG, Vorobyeva NE, Krasnov AN, Georgieva SG, Kerkerian-Le Goff L, Ugrumov MV (2014) Tyrosine hydroxylase expression and activity in nigrostriatal dopaminergic neurons of MPTP-treated mice at the presymptomatic and symptomatic stages of parkinsonism. J Neurol Sci 340:198–207

    Article  PubMed  CAS  Google Scholar 

  • Kryzhanovskii GN, Krupina NA, Kucherianu VG (1995) A new model of an experimental depressive syndrome in rats induced by the systemic administration to the animals of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Zh Vyssh Nerv Deiat Imeni I P Pavlova 45:377–387

    CAS  Google Scholar 

  • Kumari R, Kumar JB, Luthra PM (2015) Post-lesion administration of 7-NI attenuated motor and non-motor deficits in 6-OHDA induced bilaterally lesioned female rat model of Parkinson’s disease. Neurosci Lett 589:191–195

    Article  PubMed  CAS  Google Scholar 

  • Lee WT, Hong S, Yoon SH, Kim JH, Park KA, Seong GJ, Lee JE (2009) Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res 1281:64–70

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Im JY, Woo JM, Grosso H, Kim YS, Cristovao AC, Sonsalla PK, Schuster DS, Jalbut MM, Fernandez JR, Voronkov M, Junn E, Braithwaite SP, Stock JB, Mouradian MM (2013) Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson’s disease. Neurotherapeutics 10:143–153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lotrich FE, Albusaysi S, Ferrell RE (2013) Brain-derived neurotrophic factor serum levels and genotype: association with depression during interferon-alpha treatment. Neuropsychopharmacology 38:985–995

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martinez-Martin P, Rodriguez-Blazquez C, Forjaz MJ, Frades-Payo B, Aguera-Ortiz L, Weintraub D, Riesco A, Kurtis MM, Chaudhuri KR (2015) Neuropsychiatric symptoms and caregiver’s burden in Parkinson’s disease. Parkinsonism Relat Disord 21(6):629–634

    Article  PubMed  Google Scholar 

  • Matheus FC, Aguiar AS Jr, Castro AA, Villarinho JG, Ferreira J, Figueiredo CP, Walz R, Santos AR, Tasca CI, Prediger RD (2012) Neuroprotective effects of agmatine in mice infused with a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behav Brain Res 235:263–272

    Article  PubMed  CAS  Google Scholar 

  • Mayeux R (2003) Epidemiology of neurodegeneration. Annu Rev Neurosci 26:81–104

    Article  PubMed  CAS  Google Scholar 

  • Moreira EL, Rial D, Aguiar AS Jr, Figueiredo CP, Siqueira JM, DalBo S, Horst H, de Oliveira J, Mancini G, dos Santos TS, Villarinho JG, Pinheiro FV, Marino-Neto J, Ferreira J, De Bem AF, Latini A, Pizzolatti MG, Ribeiro-do-Valle RM, Prediger RD (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J Neural Transm 117:1337–1351

    Article  PubMed  CAS  Google Scholar 

  • Moretti M, Colla A, de Oliveira BG, dos Santos DB, Budni J, de Freitas AE, Farina M, Severo Rodrigues AL (2012) Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res 46:331–340

    Article  PubMed  Google Scholar 

  • Moretti M, Matheus FC, de Oliveira PA, Neis VB, Ben J, Walz R, Rodrigues AL, Prediger RD (2014) Role of agmatine in neurodegenerative diseases and epilepsy. Front Biosci 6:341–359

    Article  Google Scholar 

  • Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. J Pineal Res 58(3):262–274

    Article  PubMed  CAS  Google Scholar 

  • Neis VB, Manosso LM, Moretti M, Freitas AE, Daufenbach J, Rodrigues AL (2014) Depressive-like behavior induced by tumor necrosis factor-alpha is abolished by agmatine administration. Behav Brain Res 261:336–344

    Article  PubMed  CAS  Google Scholar 

  • Neis VB, Moretti M, Manosso LM, Lopes MW, Leal RB, Rodrigues AL (2015) Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice. Pharmacol Biochem Behav 130:9–14

    Article  PubMed  CAS  Google Scholar 

  • Nilsson FM, Kessing LV, Sorensen TM, Andersen PK, Bolwig TG (2002) Major depressive disorder in Parkinson’s disease: a register-based study. Acta Psychiatr Scand 106:202–211

    Article  PubMed  Google Scholar 

  • Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277:747–754

    Article  PubMed  CAS  Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol 50:743–755

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2004) The mouse brain in stereotaxic coordinates. Elsevier Academic Press, Amsterdam, Boston

    Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  • Raasch W, Schafer U, Chun J, Dominiak P (2001) Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 133:755–780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193

    Article  PubMed  CAS  Google Scholar 

  • Rekha KR, Selvakumar GP, Sethupathy S, Santha K, Sivakamasundari RI (2013) Geraniol ameliorates the motor behavior and neurotrophic factors inadequacy in MPTP-induced mice model of Parkinson’s disease. J Mol Neurosci 51:851–862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ren Z, Yang N, Ji C, Zheng J, Wang T, Liu Y, Zuo P (2015) Neuroprotective effects of 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone in MPTP induced Parkinsonism model in mice. Neuropharmacology 93C:209–218

    Article  Google Scholar 

  • Ricci V, Pomponi M, Martinotti G, Bentivoglio A, Loria G, Bernardini S, Caltagirone C, Bria P, Angelucci F (2010) Antidepressant treatment restores brain-derived neurotrophic factor serum levels and ameliorates motor function in Parkinson disease patients. J Clin Psychopharmacol 30:751–753

    Article  PubMed  Google Scholar 

  • Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA (2010) Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 34:1104–1114

    Article  PubMed  CAS  Google Scholar 

  • Sathiya S, Ranju V, Kalaivani P, Priya RJ, Sumathy H, Sunil AG, Babu CS (2013) Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of alpha-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6 J mice. Neuropharmacology 73:98–110

    Article  PubMed  CAS  Google Scholar 

  • Serra PA, Sciola L, Delogu MR, Spano A, Monaco G, Miele E, Rocchitta G, Miele M, Migheli R, Desole MS (2002) The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes. J Biol Chem 277:34451–34461

    Article  PubMed  CAS  Google Scholar 

  • Shen YQ, Hebert G, Lin LY, Luo YL, Moze E, Li KS, Neveu PJ (2005) Interleukine-1beta and interleukine-6 levels in striatum and other brain structures after MPTP treatment: influence of behavioral lateralization. J Neuroimmunol 158:14–25

    Article  PubMed  CAS  Google Scholar 

  • Shopsin B (2013) The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study. Acta Neuropsychiatr 25:113–118

    Article  PubMed  Google Scholar 

  • Shulman LM, Taback RL, Bean J, Weiner WJ (2001) Comorbidity of the nonmotor symptoms of Parkinson’s disease. Mov Disord 16:507–510

    Article  PubMed  CAS  Google Scholar 

  • Simuni T, Sethi K (2008) Nonmotor manifestations of Parkinson’s disease. Ann Neurol 64(Suppl 2):S65–S80

    PubMed  Google Scholar 

  • Slaughter JR, Slaughter KA, Nichols D, Holmes SE, Martens MP (2001) Prevalence, clinical manifestations, etiology, and treatment of depression in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 13:187–196

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370

    Article  PubMed  CAS  Google Scholar 

  • Taksande BG, Faldu DS, Dixit MP, Sakaria JN, Aglawe MM, Umekar MJ, Kotagale NR (2013) Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice. Eur J Pharmacol 720:115–120

    Article  PubMed  CAS  Google Scholar 

  • Tsou YH, Shih CT, Ching CH, Huang JY, Jen CJ, Yu L, Kuo YM, Wu FS, Chuang JI (2015) Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp Neurol 263:50–62

    Article  PubMed  CAS  Google Scholar 

  • Vuckovic MG, Wood RI, Holschneider DP, Abernathy A, Togasaki DM, Smith A, Petzinger GM, Jakowec MW (2008) Memory, mood, dopamine, and serotonin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Neurobiol Dis 32:319–327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang W, Yang Y, Ying C, Li W, Ruan H, Zhu X, You Y, Han Y, Chen R, Wang Y, Li M (2007) Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology 52:1678–1684

    Article  PubMed  CAS  Google Scholar 

  • Wei XL, Su RB, Wu N, Lu XQ, Zheng JQ, Li J (2007) Agmatine inhibits morphine-induced locomotion sensitization and morphine-induced changes in striatal dopamine and metabolites in rats. Eur Neuropsychopharmacol 17:790–799

    Article  PubMed  CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama H, Kuroiwa H, Yano R, Araki T (2008) Targeting reactive oxygen species, reactive nitrogen species and inflammation in MPTP neurotoxicity and Parkinson’s disease. Neurol Sci 29:293–301

    Article  PubMed  Google Scholar 

  • Zach M, Friedman A, Slawek J, Derejko M (2004) Quality of life in POLISH patients with long-lasting Parkinson’s disease. Mov Disord 19:667–672

    Article  PubMed  Google Scholar 

  • Zeidan MP, Zomkowski AD, Rosa AO, Rodrigues AL, Gabilan NH (2007) Evidence for imidazoline receptors involvement in the agmatine antidepressant-like effect in the forced swimming test. Eur J Pharmacol 565:125–131

    Article  PubMed  CAS  Google Scholar 

  • Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL (2002) Agmatine produces antidepressant-like effects in two models of depression in mice. NeuroReport 13:387–391

    Article  PubMed  CAS  Google Scholar 

  • Zomkowski AD, Oscar Rosa A, Lin J, Santos AR, Calixto JB, Rodrigues AL (2004) Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 1023:253–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) # 307687/2009-0, Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), and NENASC Project (PRONEX-FAPESC/CNPq) # 1262/2012-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgana Moretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretti, M., Neis, V.B., Matheus, F.C. et al. Effects of Agmatine on Depressive-Like Behavior Induced by Intracerebroventricular Administration of 1-Methyl-4-phenylpyridinium (MPP+). Neurotox Res 28, 222–231 (2015). https://doi.org/10.1007/s12640-015-9540-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9540-1

Keywords

Navigation