Skip to main content
Log in

Agmatine Induces Nrf2 and Protects Against Corticosterone Effects in Hippocampal Neuronal Cell Line

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of l-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

7-AAD:

7-aminoactinomycin D

ANOVA:

Analysis of variance

ARE:

Antioxidant response element

ERK:

Extracellular signal-regulated kinase

GCLc:

Glutamate cysteine ligase, catalytic subunit

GSTA2:

Glutathione S-transferase α2

HO-1:

Heme oxygenase-1

HPA:

Hypothalamic-pituitary-adrenal

JNK:

c-Jun NH 2-terminal kinase

Keap1:

Kelch-like-ECH-associated protein 1

NQO1:

NAD(P)H/quinone oxidoreductase

Nrf2:

Nuclear factor (erythroid 2 derived)-like 2

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

SSRI:

Selective serotonin reuptake inhibitor

TCA:

Tricyclic antidepressant

References

  1. WHO (2008) The global burden of disease: 2004 update: World Health Organization

  2. Jacob V, Chattopadhyay SK, Sipe TA, Thota AB, Byard GJ, Chapman DP, Community Preventive Services Task Force (2012) Economics of collaborative care for management of depressive disorders: a community guide systematic review. Am J Prev Med 42:539–549. doi:10.1016/j.amepre.2012.01.011

    Article  PubMed  Google Scholar 

  3. Balak N, Elmaci I (2007) Costs of disorders of the brain in Europe. Eur J Neurol 14:e9. doi:10.1111/j.1468-1331.2006.01570.x

    Article  CAS  PubMed  Google Scholar 

  4. Carroll CGC, Mendels J (1976) Neuroendocrine regulation in depression. I. Limbic system-adrenocortical dysfunction. Arch Gen Psychiatry 33:1039–1044. doi:10.1001/archpsyc.1976.01770090029002

    Article  CAS  PubMed  Google Scholar 

  5. Frodl T, O’Keane V (2013) How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiol Dis 52:24–37. doi:10.1016/j.nbd.2012.03.012

    Article  PubMed  Google Scholar 

  6. Maric NP, Adzic M (2013) Pharmacological modulation of HPA axis in depression—new avenues for potential therapeutic benefits. Psychiatr Danub 25:299–305

    CAS  PubMed  Google Scholar 

  7. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468. doi:10.1016/j.tins.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194. doi:10.1016/j.arr.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  9. Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:722–7229. doi:10.1016/j.pnpbp.2010.04.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128. doi:10.1034/j.1399-5618.2002.01144.x

    Article  CAS  PubMed  Google Scholar 

  11. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785. doi:10.1016/j.neubiorev.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  12. Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Kubera M, Bob P, Lerer B, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53. doi:10.1007/s11011-008-9118-1

    Article  CAS  PubMed  Google Scholar 

  13. Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ, Vargas MR, Chen PC (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69. doi:10.1196/annals.1427.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU (2013) Oxidative/nitrosative stress and antidepressants: Targets for novel antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 46:224–235. doi:10.1016/j.pnpbp.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  15. Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates—Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20:127–150. doi:10.1007/s10787-011-0111-7

    Article  CAS  PubMed  Google Scholar 

  16. Martín-de-Saavedra MD, Budni J, Cunha MP, Gómez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E, Tordera RM, Rodrigues AL, Cuadrado A, López MG (2013) Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology 38:2010–2022. doi:10.1016/j.psyneuen.2013.03.020

    Article  PubMed  Google Scholar 

  17. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139. doi:10.1128/MCB.24.16.7130-7139.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Uruno A, Motohashi H (2011) The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide 25:153–160. doi:10.1016/j.niox.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  19. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–11913. doi:10.1073/pnas.172398899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Niture SK, Kaspar JW, Shen J, Jaiswal AK (2010) Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 244:37–42. doi:10.1016/j.taap.2009.06.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277:42769–42774. doi:10.1074/jbc.M206911200

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen T, Yang CS, Pickett CB (2004) The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 37:433–441. doi:10.1016/j.freeradbiomed.2004.04.033

    Article  CAS  PubMed  Google Scholar 

  23. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780. doi:10.1038/nrc1189

    Article  CAS  PubMed  Google Scholar 

  24. Turpaev KT (2013) Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry (Mosc) 78:111–126. doi:10.1134/S0006297913020016

    Article  CAS  Google Scholar 

  25. Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199–1207. doi:10.1016/j.freeradbiomed.2004.02.074

    Article  CAS  PubMed  Google Scholar 

  26. Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci 21:187–193. doi:10.1016/S0165-6147(00)01460-7

    Article  CAS  PubMed  Google Scholar 

  27. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 17–18:880–893. doi:10.1016/j.drudis.2013.05.017

    Article  Google Scholar 

  28. Reis DJ, Regunathan S (1999) Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann N Y Acad Sci 881:65–80. doi:10.1111/j.1749-6632.1999.tb09343.x

    Article  CAS  PubMed  Google Scholar 

  29. Goracke-Postle CJ, Overland AC, Riedl MS, Stone LS, Fairbanks CA (2007) Potassium- and capsaicin-induced release of agmatine from spinal nerve terminals. J Neurochem 102:1738–1748. doi:10.1111/j.1471-4159.2007.04647.x

    Article  CAS  PubMed  Google Scholar 

  30. Tabor CW, Tabor H (1984) Polyamines. Ann Rev Biochem 53:749–790. doi:10.1146/annurev.bi.53.070184.003533

    Article  CAS  PubMed  Google Scholar 

  31. Seo S, Liu P, Leitch B (2011) Spatial learning-induced accumulation of agmatine and glutamate at hippocampal CA1 synaptic terminals. Neuroscience 192:28–36. doi:10.1016/j.neuroscience.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  32. Reis DJ, Regunathan S (1998) Agmatine: an endogenous ligand at imidazoline receptors may be a novel neurotransmitter in brain. J Auton Nerv Syst 72:80–85

    Article  CAS  PubMed  Google Scholar 

  33. Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL (2002) Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport 13:387–391

    Article  CAS  PubMed  Google Scholar 

  34. Zomkowski ADE, Rosa AO, Lin J, Santos AR, Calixto JB, Rodrigues ALS (2004) Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 1023:253–263. doi:10.1016/j.brainres.2004.07.041

    Article  CAS  Google Scholar 

  35. Zomkowski AD, Santos AR, Rodrigues AL (2005) Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci Lett 381:279–283. doi:10.1016/j.neulet.2005.02.026

    Article  CAS  PubMed  Google Scholar 

  36. Freitas AE, Bettio LE, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues AL (2014) Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuropsychopharmacol Biol Psychiatry 50:143–150. doi:10.1016/j.pnpbp.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  37. Neis VB, Manosso LM, Moretti M, Freitas AE, Daufenbach J, Rodrigues AL (2014) Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration. Behav Brain Res 261:336–344. doi:10.1016/j.bbr.2013.12.038

    Article  CAS  PubMed  Google Scholar 

  38. Shopsin B (2013) The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study. Acta Neuropsych 25:113–118

    Article  Google Scholar 

  39. Zhu MY, Wang WP, Bissette G (2006) Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience 141:2019–2027. doi:10.1016/j.neuroscience.2006.05.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  41. Martin D, Rojo A, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279:8919–8929. doi:10.1074/jbc.M309660200

    Article  CAS  PubMed  Google Scholar 

  42. Ha HC, Woster PM, Yager JD, Casero RA Jr (1997) The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proc Natl Acad Sci U S A 94:11557–11562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Anisman H, Kokkinidis L, Merali Z (2002) Further evidence for the depressive effects of cytokines: anhedonia and neurochemical changes. Brain Behav Immun 16:544–556. doi:10.1016/S0889-1591(02)00011-9

    Article  CAS  PubMed  Google Scholar 

  44. Lang UE, Borgwardt S (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 31:761–777. doi:10.1159/000350094

    Article  CAS  PubMed  Google Scholar 

  45. Gold PW, Goodwin FK, Chrousos GP (1988) Clinical and biochemical manifestations of depression: relation to the neurobiology of stress II. N Engl J Med 319:413–420. doi:10.1056/NEJM19880818319070

    Article  CAS  PubMed  Google Scholar 

  46. Jiang XZ, Li YF, Zhang YZ, Chen HX, Li J, Wang NP (2008) 5-HT1A/1B receptors, alpha2-adrenoceptors and the post-receptor adenylate cyclase activation in the mice brain are involved in the antidepressant-like action of agmatine. Yao Xue Xue Bao 43:467–473

    CAS  PubMed  Google Scholar 

  47. Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, Soares MP, López MG (2013) The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19:1135–1148. doi:10.1089/ars.2012.4671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85:241–272. doi:10.1007/s00204-011-0674-5

    Article  CAS  PubMed  Google Scholar 

  49. Kugaya A, Sanacora G (2005) Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr 10:808–819

    PubMed  Google Scholar 

  50. Paul IA, Skolnick P (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 1003:250–272. doi:10.1196/annals.1300.016

    Article  CAS  PubMed  Google Scholar 

  51. Musazzi L, Treccani G, Mallei A, Popoli M (2013) The action of antidepressants on the glutamate system: regulation of glutamate release and glutamate receptors. Biol Psychiatry 73:1180–1188. doi:10.1016/j.biopsych.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  52. Gilad GM, Salame K, Rabey JM, Gilad VH (1996) Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci 58:PL 41–PL 46

    CAS  Google Scholar 

  53. Feng Y, Piletz JE, Leblanc MH (2002) Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 52:606–611. doi:10.1203/00006450-200210000-00023

    Article  CAS  PubMed  Google Scholar 

  54. Mun CH, Lee WT, Park KA, Lee JE (2010) Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain. Anat Cell Biol 43:230–240. doi:10.5115/acb.2010.43.3.230

    Article  PubMed Central  PubMed  Google Scholar 

  55. Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE (2004) Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol 189:122–130. doi:10.1016/j.expneurol.2004.05.029

    Article  CAS  PubMed  Google Scholar 

  56. Gilad GM, Gilad VH (2000) Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Lett 296:97–100. doi:10.1016/S0304-3940(00)01625-6

    Article  CAS  PubMed  Google Scholar 

  57. Kotil K, Kuscuoglu U, Kirali M, Uzun H, Akçetin M, Bilge T (2006) Investigation of the dose-dependent neuroprotective effects of agmatine in experimental spinal cord injury: a prospective randomized and placebo-control trial. J Neurosurg Spine 4:392–399

    Article  PubMed  Google Scholar 

  58. Yu CG, Marcillo AE, Fairbanks CA, Wilcox GL, Yezierski RP (2000) Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. Neuroreport 11:3203–3207

    Article  CAS  PubMed  Google Scholar 

  59. Gilad GM, Gilad VH, Finberg JP, Rabey JM (2005) Neurochemical evidence for agmatine modulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity. Neurochem Res 30:713–719

    Article  CAS  PubMed  Google Scholar 

  60. Matheus FC, Aguiar AS Jr, Castro AA, Villarinho JG, Ferreira J, Figueiredo CP, Walz R, Santos AR, Tasca CI, Prediger RD (2012) Neuroprotective effects of agmatine in mice infused with a single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Behav Brain Res 235:263–272. doi:10.1016/j.bbr.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  61. Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpció Boronat M, Trullas R, Villarroel A, Lerma J, García-Sevilla JÁ (1999) Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 127:1317–1326. doi:10.1038/sj.bjp.0702679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wang WP, Iyo AH, Miguel-Hidalgo J, Regunathan S, Zhu MY (2006) Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons. Brain Res 1084:210–216. doi:10.1016/j.brainres.2006.02.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bergin DH, Liu P (2010) Agmatine protects against beta-amyloid25-35-induced memory impairments in the rat. Neuroscience 169:794–811. doi:10.1016/j.neuroscience.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  64. Condello S, Currò M, Ferlazzo N, Caccamo D, Satriano J, Ientile R (2011) Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116:67–75. doi:10.1111/j.1471-4159.2010.07085.x

    Article  CAS  PubMed  Google Scholar 

  65. Brossaud J, Roumes H, Moisan MP, Pallet V, Redonnet A, Corcuff JB (2013) Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. J Neurochem 125:518–531. doi:10.1111/jnc.12192

    Article  CAS  PubMed  Google Scholar 

  66. Duncan RS, Chapman KD, Koulen P (2009) The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line. Mol Neurodegener 4:50. doi:10.1186/1750-1326-4-50

    Article  PubMed Central  PubMed  Google Scholar 

  67. Fukui M, Choi HJ, Zhu BT (2010) Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 49:800–813. doi:10.1016/j.freeradbiomed.2010.06.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Mendelev N, Mehta SL, Idris H, Kumari S, Li PA (2012) Selenite stimulates mitochondrial biogenesis signaling and enhances mitochondrial functional performance in murine hippocampal neuronal cells. PLoS One 10:e47910. doi:10.1371/journal.pone.0047910

    Article  Google Scholar 

  69. Li YF, Liu YQ, Huang WC, Luo ZP (2003) Cytoprotective effect is one of common action pathways for antidepressants. Acta Pharmacol Sin 24:996–1000

    CAS  PubMed  Google Scholar 

  70. Wang H, Zhou X, Huang J, Mu N, Guo Z, Wen Q, Wang R, Chen S, Feng ZP, Zheng W (2013) The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology (Berl) 228:129–141. doi:10.1007/s00213-013-3017-9

    Article  CAS  Google Scholar 

  71. Krass M, Wegener G, Vasar E, Volke V (2008) Antidepressant-like effect of agmatine is not mediated by serotonin. Behav Brain Res 188:324–328. doi:10.1016/j.bbr.2007.11.013

    Article  CAS  PubMed  Google Scholar 

  72. Taksande BG, Kotagale NR, Tripathi SJ, Ugale RR, Chopde CT (2009) Antidepressant like effect of selective serotonin reuptake inhibitors involve modulation of imidazoline receptors by agmatine. Neuropharmacology 57:415–424. doi:10.1016/j.neuropharm.2009.06.035

    Article  CAS  PubMed  Google Scholar 

  73. Drzyzga ŁR, Marcinowska A, Obuchowicz E (2009) Antiapoptotic and neurotrophic effects of antidepressants: a review of clinical and experimental studies. Brain Res Bull 79:248–257. doi:10.1016/j.brainresbull.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  74. Young LT (2002) Neuroprotective effects of antidepressant and mood stabilizing drugs. J Psychiatry Neurosci 27:8–9

    PubMed Central  PubMed  Google Scholar 

  75. Lin HY, Yeh WL, Huang BR, Lin C, Lai CH, Lin H, Lu DY (2012) Desipramine protects neuronal cell death and induces heme oxygenase-1 expression in Mes23.5 dopaminergic neurons. PLoS One 11:e50138

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net/CNPq),” CNPq, FAPESC, CAPES/PDSE, CAPES/PROCAD, Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC) Project/PRONEX Program CNPq/FAPESC (Brazil) to ALSR. The 8th Convocatoria de proyectos de Cooperación Interuniversitaria UAM-Santander con America Latina, Spanish Ministry of Economy and Competence Ref. SAF2012-32223, and Spanish Ministry of Health (Instituto de Salud Carlos III) RETICS-RD06/0026 to MGL.

Conflict of Interest

All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andiara E. Freitas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, A.E., Egea, J., Buendía, I. et al. Agmatine Induces Nrf2 and Protects Against Corticosterone Effects in Hippocampal Neuronal Cell Line. Mol Neurobiol 51, 1504–1519 (2015). https://doi.org/10.1007/s12035-014-8827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8827-1

Keywords

Navigation