Skip to main content

Advertisement

Log in

Role of BDNF in Central Motor Structures and Motor Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain-derived neurotrophic factor (BDNF), belonging to the neurotrophic family of growth factors, has a widespread distribution in the central and peripheral nervous systems. In central motor structures including the motor cortex, cerebellum, basal ganglia, and spinal cord, BDNF exerts both neurotrophic and direct electrophysiological effects via a high-affinity tyrosine receptor kinase B receptor and a common low-affinity p75 neurotrophin receptor. The underlying signaling pathways mainly involve mitogen-activated protein kinase cascades, phosphatidylinositol 3-kinase pathway, and phospholipase C-γ pathway. The loss of BDNF usually leads to neurodegeneration in these motor centers and eventually results in several severe motor diseases, such as amyotrophic lateral sclerosis, spinocerebellar ataxias, Parkinson’s disease, Huntington’s disease, as well as vestibular syndrome. In this review, we summarize the recent understanding of functions of BDNF in motor structures and suggest that BDNF may be a potent candidate for the treatment of these neurodegenerative motor diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–53

    CAS  PubMed  Google Scholar 

  2. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P et al (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–52

    Article  CAS  PubMed  Google Scholar 

  3. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    Article  CAS  PubMed  Google Scholar 

  4. Binder DK (2004) The role of BDNF in epilepsy and other diseases of the mature nervous system. Adv Exp Med Biol 548:34–56

    Article  CAS  PubMed  Google Scholar 

  5. Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    Article  CAS  PubMed  Google Scholar 

  6. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–22

    Article  CAS  PubMed  Google Scholar 

  7. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL et al (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389:856–60

    Article  CAS  PubMed  Google Scholar 

  8. Ming GL, Wong ST, Henley J, Yuan XB, Song HJ, Spitzer NC et al (2002) Adaptation in the chemotactic guidance of nerve growth cones. Nature 417:411–8

    Article  CAS  PubMed  Google Scholar 

  9. Oppenheim RW, Yin QW, Prevette D, Yan Q (1992) Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360:755–7

    Article  CAS  PubMed  Google Scholar 

  10. Vavrek R, Girgis J, Tetzlaff W, Hiebert GW, Fouad K (2006) BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats. Brain 129:1534–45

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–81

    Article  CAS  PubMed  Google Scholar 

  12. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP et al (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350:230–2

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Yui D, Luikart BW, McKay RM, Rubenstein JL, Parada LF (2012) Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci U S A 109:15491–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18:321–6

    Article  CAS  PubMed  Google Scholar 

  15. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–42

    Article  CAS  PubMed  Google Scholar 

  16. Ito M (2011) The cerebellum: brain for an implicit self. FT Press Science, Upper Saddle River

  17. Ortega F, Perez-Sen R, Morente V, Delicado EG, Miras-Portugal MT (2010) P2X7, NMDA and BDNF receptors converge on GSK3 phosphorylation and cooperate to promote survival in cerebellar granule neurons. Cell Mol Life Sci 67:1723–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zirrgiebel U, Ohga Y, Carter B, Berninger B, Inagaki N, Thoenen H et al (1995) Characterization of TrkB receptor-mediated signaling pathways in rat cerebellar granule neurons: involvement of protein kinase C in neuronal survival. J Neurochem 65:2241–50

    Article  CAS  PubMed  Google Scholar 

  19. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras–MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–62

    Article  CAS  PubMed  Google Scholar 

  20. Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200

    Article  CAS  PubMed  Google Scholar 

  21. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–5

    Article  CAS  PubMed  Google Scholar 

  22. Lui NP, Chen LW, Yung WH, Chan YS, Yung KK (2012) Endogenous repair by the activation of cell survival signalling cascades during the early stages of rat parkinsonism. PLoS One 7:e51294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bizzi E, Tresch MC, Saltiel P, D’Avella A (2000) New perspectives on spinal motor systems. Nat Rev Neurosci 1:101–8

    Article  CAS  PubMed  Google Scholar 

  24. Gao L, Li LH, Xing RX, Ou S, Liu GD, Wang YP et al (2012) Gastrocnemius-derived BDNF promotes motor function recovery in spinal cord transected rats. Growth Factors 30:167–75

    Article  CAS  PubMed  Google Scholar 

  25. Hu P, Kalb RG (2003) BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB. J Neurochem 84:1421–30

    Article  CAS  PubMed  Google Scholar 

  26. Slack SE, Pezet S, McMahon SB, Thompson SW, Malcangio M (2004) Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci 20:1769–78

    Article  PubMed  Google Scholar 

  27. Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–33

    Article  CAS  PubMed  Google Scholar 

  28. Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard RJ, Le SS et al (2004) The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci 24:4498–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Boyce VS, Park J, Gage FH, Mendell LM (2012) Differential effects of brain-derived neurotrophic factor and neurotrophin-3 on hindlimb function in paraplegic rats. Eur J Neurosci 35:221–32

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kafitz KW, Rose CR, Thoenen H, Konnerth A (1999) Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401:918–21

    Article  CAS  PubMed  Google Scholar 

  31. Shen RY, Altar CA, Chiodo LA (1994) Brain-derived neurotrophic factor increases the electrical activity of pars compacta dopamine neurons in vivo. Proc Natl Acad Sci U S A 91:8920–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R et al (2006) BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 9:735–7

    Article  CAS  PubMed  Google Scholar 

  33. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG et al (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Boxall AR (2000) GABAergic mIPSCs in rat cerebellar Purkinje cells are modulated by TrkB and mGluR1-mediated stimulation of Src. J Physiol 524(Pt 3):677–84

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, Ko H, Cheung ZH, Yung KK, Yao T, Wang JJ et al (2012) Dual actions of brain-derived neurotrophic factor on GABAergic transmission in cerebellar Purkinje neurons. Exp Neurol 233:791–8

    Article  CAS  PubMed  Google Scholar 

  36. Carter AR, Chen C, Schwartz PM, Segal RA (2002) Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci 22:1316–27

    CAS  PubMed  Google Scholar 

  37. Jia Y, Gall CM, Lynch G (2010) Presynaptic BDNF promotes postsynaptic long-term potentiation in the dorsal striatum. J Neurosci 30:14440–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Giralt A, Carreton O, Lao-Peregrin C, Martin ED, Alberch J (2011) Conditional BDNF release under pathological conditions improves Huntington’s disease pathology by delaying neuronal dysfunction. Mol Neurodegener 6:71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Arvanian VL, Mendell LM (2001) Acute modulation of synaptic transmission to motoneurons by BDNF in the neonatal rat spinal cord. Eur J Neurosci 14:1800–8

    Article  CAS  PubMed  Google Scholar 

  40. Lohof AM, Ip NY, Poo MM (1993) Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363:350–3

    Article  CAS  PubMed  Google Scholar 

  41. McGurk JS, Shim S, Kim JY, Wen Z, Song H, Ming GL (2011) Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction. J Neurosci 31:14754–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–19

    Article  CAS  PubMed  Google Scholar 

  43. Moore DH, Katz JS, Miller RG (2011) A review of clinical trial designs in amyotrophic lateral sclerosis. Neurodegenerative Disease Management 1:481–490

    Article  Google Scholar 

  44. Cozzolino M, Ferri A, Carri MT (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10:405–43

    Article  CAS  PubMed  Google Scholar 

  45. Nishio T, Sunohara N, Furukawa S (1998) Neutrophin switching in spinal motoneurons of amyotrophic lateral sclerosis. Neuroreport 9:1661–5

    Article  CAS  PubMed  Google Scholar 

  46. Ekestern E (2004) Neurotrophic factors and amyotrophic lateral sclerosis. Neurodegener Dis 1:88–100

    Article  CAS  PubMed  Google Scholar 

  47. Tuszynski MH, Mafong E, Meyer S (1996) Central infusions of brain-derived neurotrophic factor and neurotrophin-4/5, but not nerve growth factor and neurotrophin-3, prevent loss of the cholinergic phenotype in injured adult motor neurons. Neuroscience 71:761–71

    Article  CAS  PubMed  Google Scholar 

  48. Mitsumoto H, Ikeda K, Klinkosz B, Cedarbaum JM, Wong V, Lindsay RM (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265:1107–10

    Article  CAS  PubMed  Google Scholar 

  49. Turner BJ, Cheah IK, Macfarlane KJ, Lopes EC, Petratos S, Langford SJ et al (2003) Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 87:752–63

    Article  CAS  PubMed  Google Scholar 

  50. Zhai J, Zhou W, Li J, Hayworth CR, Zhang L, Misawa H et al (2011) The in vivo contribution of motor neuron TrkB receptors to mutant SOD1 motor neuron disease. Hum Mol Genet 20:4116–31

    Article  CAS  PubMed  Google Scholar 

  51. Yanpallewar SU, Barrick CA, Buckley H, Becker J, Tessarollo L (2012) Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS One 7:e39946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ochs G, Penn RD, York M, Giess R, Beck M, Tonn J et al (2000) A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:201–6

    Article  CAS  PubMed  Google Scholar 

  53. Beck M, Flachenecker P, Magnus T, Giess R, Reiners K, Toyka KV et al (2005) Autonomic dysfunction in ALS: a preliminary study on the effects of intrathecal BDNF. Amyotroph Lateral Scler Other Motor Neuron Disord 6:100–3

    Article  CAS  PubMed  Google Scholar 

  54. Nicaise C, Mitrecic D, Pochet R (2011) Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells. Neuropathol Appl Neurobiol 37:179–88

    Article  CAS  PubMed  Google Scholar 

  55. Schols L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304

    Article  PubMed  Google Scholar 

  56. Takahashi M, Ishikawa K, Sato N, Obayashi M, Niimi Y, Ishiguro T et al (2012) Reduced brain-derived neurotrophic factor (BDNF) mRNA expression and presence of BDNF-immunoreactive granules in the spinocerebellar ataxia type 6 (SCA6) cerebellum. Neuropathology 32:595–603

    Article  PubMed  Google Scholar 

  57. Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d’Exaerde A et al (2011) Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 31:11795–807

    Article  CAS  PubMed  Google Scholar 

  58. Dieni S, Rees S (2002) Distribution of brain-derived neurotrophic factor and TrkB receptor proteins in the fetal and postnatal hippocampus and cerebellum of the guinea pig. J Comp Neurol 454:229–40

    Article  CAS  PubMed  Google Scholar 

  59. Ringstedt T, Lagercrantz H, Persson H (1993) Expression of members of the trk family in the developing postnatal rat brain. Brain Res Dev Brain Res 72:119–31

    Article  CAS  PubMed  Google Scholar 

  60. Furutani K, Okubo Y, Kakizawa S, Iino M (2006) Postsynaptic inositol 1,4,5-trisphosphate signaling maintains presynaptic function of parallel fiber–Purkinje cell synapses via BDNF. Proc Natl Acad Sci U S A 103:8528–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hisatsune C, Kuroda Y, Akagi T, Torashima T, Hirai H, Hashikawa T et al (2006) Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. J Neurosci 26:10916–24

    Article  CAS  PubMed  Google Scholar 

  62. Johnson EM, Craig ET, Yeh HH (2007) TrkB is necessary for pruning at the climbing fibre–Purkinje cell synapse in the developing murine cerebellum. J Physiol 582:629–46

    Article  CAS  PubMed  Google Scholar 

  63. Rico B, Xu B, Reichardt LF (2002) TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nat Neurosci 5:225–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S (2010) Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis 40:415–23

    Article  PubMed  Google Scholar 

  65. Ohta H, Arai S, Akita K, Ohta T, Fukuda S (2011) Neurotrophic effects of a cyanine dye via the PI3K–Akt pathway: attenuation of motor discoordination and neurodegeneration in an ataxic animal model. PLoS One 6:e17137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Yuan H, Zhang ZW, Liang LW, Shen Q, Wang XD, Ren SM et al (2010) Treatment strategies for Parkinson’s disease. Neurosci Bull 26:66–76

    Article  CAS  PubMed  Google Scholar 

  67. Marco S, Canudas AM, Canals JM, Gavalda N, Perez-Navarro E, Alberch J (2002) Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol 174:243–52

    Article  CAS  PubMed  Google Scholar 

  68. Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L et al (1997) Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 78:431–48

    Article  CAS  PubMed  Google Scholar 

  69. Baydyuk M, Nguyen MT, Xu B (2011) Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol 228:118–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Stahl K, Mylonakou MN, Skare O, Amiry-Moghaddam M, Torp R (2011) Cytoprotective effects of growth factors: BDNF more potent than GDNF in an organotypic culture model of Parkinson’s disease. Brain Res 1378:105–18

    Article  CAS  PubMed  Google Scholar 

  71. Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ et al (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166:127–35

    Article  CAS  PubMed  Google Scholar 

  72. Scalzo P, Kummer A, Bretas TL, Cardoso F, Teixeira AL (2010) Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol 257:540–5

    Article  CAS  PubMed  Google Scholar 

  73. Ziebell M, Khalid U, Klein AB, Aznar S, Thomsen G, Jensen P et al (2012) Striatal dopamine transporter binding correlates with serum BDNF levels in patients with striatal dopaminergic neurodegeneration. Neurobiol Aging 33(428):e1–5

    PubMed  Google Scholar 

  74. Karamohamed S, Latourelle JC, Racette BA, Perlmutter JS, Wooten GF, Lew M et al (2005) BDNF genetic variants are associated with onset age of familial Parkinson disease: GenePD Study. Neurology 65:1823–5

    Article  CAS  PubMed  Google Scholar 

  75. Levivier M, Przedborski S, Bencsics C, Kang UJ (1995) Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 15:7810–20

    CAS  PubMed  Google Scholar 

  76. Tsukahara T, Takeda M, Shimohama S, Ohara O, Hashimoto N (1995) Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery 37:733–9, discussion 739–741

    Article  CAS  PubMed  Google Scholar 

  77. Ferrer I, Goutan E, Marin C, Rey MJ, Ribalta T (2000) Brain-derived neurotrophic factor in Huntington disease. Brain Res 866:257–61

    Article  CAS  PubMed  Google Scholar 

  78. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–8

    Article  CAS  PubMed  Google Scholar 

  79. Baquet ZC, Bickford PC, Jones KR (2005) Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci 25:6251–9

    Article  CAS  PubMed  Google Scholar 

  80. Reiner A, Wang HB, Del Mar N, Sakata K, Yoo W, Deng YP (2012) BDNF may play a differential role in the protective effect of the mGluR2/3 agonist LY379268 on striatal projection neurons in R6/2 Huntington’s disease mice. Brain Res 1473:161–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J et al (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214:193–200

    Article  CAS  PubMed  Google Scholar 

  82. Hathorn T, Snyder-Keller A, Messer A (2011) Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington’s disease. Neurobiol Dis 41:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Xie Y, Hayden MR, Xu B (2010) BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 30:14708–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Borel L, Lopez C, Peruch P, Lacour M (2008) Vestibular syndrome: a change in internal spatial representation. Neurophysiol Clin 38:375–89

    Article  CAS  PubMed  Google Scholar 

  85. Lacour M, Tighilet B (2010) Plastic events in the vestibular nuclei during vestibular compensation: the brain orchestration of a “deafferentation” code. Restor Neurol Neurosci 28:19–35

    PubMed  Google Scholar 

  86. Pirvola U, Arumae U, Moshnyakov M, Palgi J, Saarma M, Ylikoski J (1994) Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation. Hear Res 75:131–44

    Article  CAS  PubMed  Google Scholar 

  87. Bianchi LM, Conover JC, Fritzsch B, DeChiara T, Lindsay RM, Yancopoulos GD (1996) Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development 122:1965–73

    CAS  PubMed  Google Scholar 

  88. Montcouquiol ME, Sans NA, Travo C, Sans A, Valat J (2000) Detection and localization of BDNF in vestibular nuclei during the postnatal development of the rat. Neuroreport 11:1401–5

    Article  CAS  PubMed  Google Scholar 

  89. Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–64

    Article  CAS  PubMed  Google Scholar 

  90. Zheng JL, Stewart RR, Gao WQ (1995) Neurotrophin-4/5, brain-derived neurotrophic factor, and neurotrophin-3 promote survival of cultured vestibular ganglion neurons and protect them against neurotoxicity of ototoxins. J Neurobiol 28:330–40

    Article  CAS  PubMed  Google Scholar 

  91. Li YX, Hashimoto T, Tokuyama W, Miyashita Y, Okuno H (2001) Spatiotemporal dynamics of brain-derived neurotrophic factor mRNA induction in the vestibulo-olivary network during vestibular compensation. J Neurosci 21:2738–48

    CAS  PubMed  Google Scholar 

  92. Smith PF, Curthoys IS (1989) Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Brain Res Rev 14:155–80

    Article  CAS  PubMed  Google Scholar 

  93. Bolger C, Sansom AJ, Smith PF, Darlington CL (1999) An antisense oligonucleotide to brain-derived neurotrophic factor delays postural compensation following unilateral labyrinthectomy in guinea pig. Neuroreport 10:1485–8

    Article  CAS  PubMed  Google Scholar 

  94. Maingay MG, Sansom AJ, Kerr DR, Smith PF, Darlington CL (2000) The effects of intra-vestibular nucleus administration of brain-derived neurotrophic factor (BDNF) on recovery from peripheral vestibular damage in guinea pig. Neuroreport 11:2429–32

    Article  CAS  PubMed  Google Scholar 

  95. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–73

    Article  CAS  PubMed  Google Scholar 

  96. Gasmi M, Brandon EP, Herzog CD, Wilson A, Bishop KM, Hofer EK et al (2007) AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 27:67–76

    Article  CAS  PubMed  Google Scholar 

  97. O’Leary PD, Hughes RA (2003) Design of potent peptide mimetics of brain-derived neurotrophic factor. J Biol Chem 278:25738–44

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 31070959, 31071021, and 31171050 and the NSFC/RGC Joint Research Scheme 30931160433 from the National Natural Science Foundation of China; grant 2900336 from the Research Grants Council of Hong Kong, China; RFDP grant 20100091110016 and NCET Program from the State Educational Ministry of China; and grant BK2011014 from the Natural Science Foundation of Jiangsu Province, China.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Ning Zhu or Jian-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YY., Zhang, XY., Yung, WH. et al. Role of BDNF in Central Motor Structures and Motor Diseases. Mol Neurobiol 48, 783–793 (2013). https://doi.org/10.1007/s12035-013-8466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8466-y

Keywords

Navigation