Skip to main content
Log in

Antidepressant-like effect of guanosine involves activation of AMPA receptor and BDNF/TrkB signaling

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nat Rev Dis Primers 2:16065. https://doi.org/10.1038/nrdp.2016.65

    Article  PubMed  Google Scholar 

  2. Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7(2):137–151. https://doi.org/10.1038/nrn1846

    Article  CAS  PubMed  Google Scholar 

  3. Masi G, Brovedani P (2011) The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression. CNS Drugs 25(11):913–931. https://doi.org/10.2165/11595900-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  4. Fava M (2003) Diagnosis and definition of treatment-resistant depression. Biol Psychiatry 53(8):649–659. https://doi.org/10.1016/s0006-3223(03)00231-2

    Article  PubMed  Google Scholar 

  5. Papakostas GI, Ionescu DF (2015) Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 20(10):1142–1150. https://doi.org/10.1038/mp.2015.92

    Article  CAS  PubMed  Google Scholar 

  6. Duman RS (2014) Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci 16(1):11–27. https://doi.org/10.1038/nrdp.2017.13

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arai AC, Kessler M, Rogers G, Lynch G (2000) Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol Pharmacol 58(4):802–813. https://doi.org/10.1124/mol.58.4.802

    Article  CAS  PubMed  Google Scholar 

  8. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2014) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 18(1). https://doi.org/10.1093/ijnp/pyu033

  9. Castren E (2004) Neurotrophic effects of antidepressant drugs. Curr Opin Pharmacol 4(1):58–64. https://doi.org/10.1016/j.coph.2003.10.004

    Article  CAS  PubMed  Google Scholar 

  10. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–815. https://doi.org/10.1001/archpsyc.60.8.804

    Article  CAS  PubMed  Google Scholar 

  11. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16(6):634–646. https://doi.org/10.1038/mp.2010.44

    Article  CAS  PubMed  Google Scholar 

  12. Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M (2009) Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 29(27):8688–8697. https://doi.org/10.1523/JNEUROSCI.6078-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75. https://doi.org/10.1016/j.tins.2009.11.003

    Article  CAS  Google Scholar 

  14. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. https://doi.org/10.1126/science.1190287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Browne CA, Lucki I (2013) Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161. https://doi.org/10.3389/fphar.2013.00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camargo A, Rodrigues ALS (2019) Novel targets for fast antidepressant responses: possible role of endogenous neuromodulators. Chronic Stress 3:2470547019858083. https://doi.org/10.1177/2470547019858083

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D'Onofrio M, Caciagli F, Di Iorio P (2001) Involvement of astrocytes in purine-mediated reparative processes in the brain. Int J Dev Neurosci 19(4):395–414. https://doi.org/10.1016/s0736-5748(00)00084-8

    Article  CAS  PubMed  Google Scholar 

  18. Bettio LE, Gil-Mohapel J, Rodrigues AL (2016) Guanosine and its role in neuropathologies. Purinergic Signal 12(3):411–426. https://doi.org/10.1007/s11302-016-9509-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tasca CI, Lanznaster D, Oliveira KA, Fernandez-Duenas V, Ciruela F (2018) Neuromodulatory effects of guanine-based purines in health and disease. Front Cell Neurosci 12:376. https://doi.org/10.3389/fncel.2018.00376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bettio LE, Cunha MP, Budni J, Pazini FL, Oliveira A, Colla AR, Rodrigues ALS (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234(2):137–148. https://doi.org/10.1016/j.bbr.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  21. Kelly A, Lynch MA (2000) Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacology 39(4):643–651. https://doi.org/10.1016/s0028-3908(99)00169-0

    Article  CAS  PubMed  Google Scholar 

  22. Dwivedi Y, Rizavi HS, Teppen T, Zhang H, Mondal A, Roberts RC, Conley RR, Pandey GN (2008) Lower phosphoinositide 3-kinase (PI 3-kinase) activity and differential expression levels of selective catalytic and regulatory PI 3-kinase subunit isoforms in prefrontal cortex and hippocampus of suicide subjects. Neuropsychopharmacology 33(10):2324–2340. https://doi.org/10.1038/sj.npp.1301641

    Article  CAS  PubMed  Google Scholar 

  23. Yang PC, Yang CH, Huang CC, Hsu KS (2008) Phosphatidylinositol 3-kinase activation is required for stress protocol-induced modification of hippocampal synaptic plasticity. J Biol Chem 283(5):2631–2643. https://doi.org/10.1074/jbc.M706954200

    Article  CAS  PubMed  Google Scholar 

  24. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 29(7):419–423. https://doi.org/10.1016/j.eurpsy.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  25. Liu RJ, Duman C, Kato T, Hare B, Lopresto D, Bang E, Burgdorf J, Moskal J, Taylor J, Aghajanian G, Duman RS (2017) GLYX-13 produces rapid antidepressant responses with key synaptic and behavioral effects distinct from ketamine. Neuropsychopharmacology 42(6):1231–1242. https://doi.org/10.1038/npp.2016.202

    Article  CAS  PubMed  Google Scholar 

  26. Maeng S, Zarate CA Jr (2007) The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects. Curr Psychiatry Rep 9(6):467–474. https://doi.org/10.1007/s11920-007-0063-1

    Article  PubMed  Google Scholar 

  27. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63(4):349–352. https://doi.org/10.1016/j.biopsych.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  28. Kaster MP, Machado DG, Santos AR, Rodrigues ALS (2012) Involvement of NMDA receptors in the antidepressant-like action of adenosine. Pharmacol Rep 64(3):706–713. https://doi.org/10.1016/s1734-1140(12)70865-4

    Article  CAS  PubMed  Google Scholar 

  29. Paxinos, G., Franklin, K., 2004. The mouse brain in stereotaxic coordinates. Gulf Professional Publishing.

  30. Cunha MP, Pazini FL, Ludka FK, Rosa JM, Oliveira A, Budni J, Ramos-Hryb AB, Lieberknecht V, Bettio LE, Martin-de-Saavedra MD, Lopez MG, Tasca CI, Rodrigues ALS (2015) The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 47(4):795–811. https://doi.org/10.1007/s00726-014-1910-0

    Article  CAS  PubMed  Google Scholar 

  31. Neis VB, Moretti M, Bettio LE, Ribeiro CM, Rosa PB, Goncalves FM, Lopes MW, Leal RB, Rodrigues ALS (2016) Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling. Eur Neuropsychopharmacol 26(6):959–971. https://doi.org/10.1016/j.euroneuro.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  32. Manosso LM, Moretti M, Rosa JM, Cunha MP, Rodrigues ALS (2017) Evidence for the involvement of heme oxygenase-1 in the antidepressant-like effect of zinc. Pharmacol Rep 69(3):497–503. https://doi.org/10.1016/j.pharep.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  33. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85(3):367–370. https://doi.org/10.3791/3769

    Article  CAS  Google Scholar 

  34. Rosa PB, Bettio LEB, Neis VB, Moretti M, Werle I, Leal RB, Rodrigues ALS (2019) The antidepressant-like effect of guanosine is dependent on GSK-3beta inhibition and activation of MAPK/ERK and Nrf2/heme oxygenase-1 signaling pathways. Purinergic Signal 15(4):491–504. https://doi.org/10.1007/s11302-019-09681-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fukumoto K, Iijima M, Chaki S (2014) Serotonin-1A receptor stimulation mediates effects of a metabotropic glutamate 2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the novelty-suppressed feeding test. Psychopharmacology (Berl) 231(11):2291–2298. https://doi.org/10.1007/s00213-013-3378-0

    Article  CAS  Google Scholar 

  36. Fraga DB, Costa AP, Olescowicz G, Camargo A, Pazini FL, Freitas AE, Moretti M, Brocardo PS, ALS R (2020) Ascorbic acid presents rapid behavioral and hippocampal synaptic plasticity effects. Prog Neuropsychopharmacol Biol Psychiatry 96:109757. https://doi.org/10.1016/j.pnpbp.2019.109757

    Article  CAS  PubMed  Google Scholar 

  37. Pazini FL, Cunha MP, Rosa JM, Colla AR, Lieberknecht V, Oliveira A, Rodrigues ALS (2016) Creatine, similar to ketamine, counteracts depressive-like behavior induced by corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol 53(10):6818–6834. https://doi.org/10.1007/s12035-015-9580-9

    Article  CAS  PubMed  Google Scholar 

  38. Spacek J (1992) Dynamics of Golgi impregnation in neurons. Microsc Res Tech 23(4):264–274. https://doi.org/10.1002/jemt.1070230403

    Article  CAS  PubMed  Google Scholar 

  39. Vints K, Vandael D, Baatsen P, Pavie B, Vernaillen F, Corthout N, Rybakin V, Munck S, Gounko NV (2019) Modernization of Golgi staining techniques for high-resolution, 3-dimensional imaging of individual neurons. Sci Rep 9(1):130. https://doi.org/10.1038/s41598-018-37377-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J Neurosci Methods 79(1):1–4. https://doi.org/10.1016/s0165-0270(97)00163-5

    Article  CAS  PubMed  Google Scholar 

  41. Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 35(2):219–233. https://doi.org/10.1016/j.nbd.2009.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calfa G, Chapleau CA, Campbell S, Inoue T, Morse SJ, Lubin FD, Pozzo-Miller L (2012) HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons. Hippocampus 22(7):1493–1500. https://doi.org/10.1002/hipo.20990

    Article  CAS  PubMed  Google Scholar 

  43. Koh IY, Lindquist WB, Zito K, Nimchinsky EA, Svoboda K (2002) An image analysis algorithm for dendritic spines. Neural Comput 14(6):1283–1310. https://doi.org/10.1162/089976602753712945

    Article  PubMed  Google Scholar 

  44. Giachero M, Calfa GD, Molina VA (2015) Hippocampal dendritic spines remodeling and fear memory are modulated by GABAergic signaling within the basolateral amygdala complex. Hippocampus 25(5):545–555. https://doi.org/10.1002/hipo.22409

    Article  CAS  PubMed  Google Scholar 

  45. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95. https://doi.org/10.1038/nature10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koike H, Iijima M, Chaki S (2011) Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists. Neuropharmacology 61(8):1419–1423. https://doi.org/10.1016/j.neuropharm.2011.08.034

    Article  CAS  PubMed  Google Scholar 

  47. Neis VB, Bettio LEB, Moretti M, Rosa PB, Ribeiro CM, Freitas AE, Goncalves FM, Leal RB, Rodrigues ALS (2016) Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice. Pharmacol Biochem Behav 150-151:108–114. https://doi.org/10.1016/j.pbb.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  48. Neis VB, Bettio LB, Moretti M, Rosa PB, Olescowicz G, Fraga DB, Goncalves FM, Freitas AE, Heinrich IA, Lopes MW, Leal RB, Rodrigues ALS (2018) Single administration of agmatine reverses the depressive-like behavior induced by corticosterone in mice: Comparison with ketamine and fluoxetine. Pharmacol Biochem Behav 173:44–50. https://doi.org/10.1016/j.pbb.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  49. Bettio LE, Freitas AE, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues ALS (2014) Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol Biochem Behav 127:7–14. https://doi.org/10.1016/j.pbb.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  50. Bettio LE, Neis VB, Pazini FL, Brocardo PS, Patten AR, Gil-Mohapel J, Christie BR, Rodrigues ALS (2016) The antidepressant-like effect of chronic guanosine treatment is associated with increased hippocampal neuronal differentiation. Eur J Neurosci 43(8):1006–1015. https://doi.org/10.1111/ejn.13172

    Article  PubMed  Google Scholar 

  51. Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, Hortnagl H, Riva MA, Sprengel R, Gass P (2008) AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J 22(9):3129–3134. https://doi.org/10.1096/fj.08-106450

    Article  CAS  PubMed  Google Scholar 

  52. Arai AC, Kessler M (2007) Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets 8(5):583–602. https://doi.org/10.2174/138945007780618490

    Article  CAS  PubMed  Google Scholar 

  53. Alt A, Nisenbaum ES, Bleakman D, Witkin JM (2006) A role for AMPA receptors in mood disorders. Biochem Pharmacol 71(9):1273–1288. https://doi.org/10.1016/j.bcp.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  54. Palucha-Poniewiera A, Wieronska JM, Branski P, Stachowicz K, Chaki S, Pilc A (2010) On the mechanism of the antidepressant-like action of group II mGlu receptor antagonist, MGS0039. Psychopharmacology (Berl) 212(4):523–535. https://doi.org/10.1007/s00213-010-1978-5

    Article  CAS  Google Scholar 

  55. Dwyer JM, Lepack AE, Duman RS (2012) mTOR activation is required for the antidepressant effects of mGluR(2)/(3) blockade. Int J Neuropsychopharmacol 15(4):429–434. https://doi.org/10.1017/S1461145711001702

    Article  CAS  PubMed  Google Scholar 

  56. Duman RS, Li N (2012) A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists. Philos Trans R Soc Lond B Biol Sci 367:2475–2484. https://doi.org/10.1098/rstb.2011.0357

    Article  CAS  Google Scholar 

  57. Freudenberg F, Celikel T, Reif A (2015) The role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev 52:193–206. https://doi.org/10.1016/j.neubiorev.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  58. Sayson LV, Botanas CJ, Custodio RJP, Abiero A, Kim M, Lee HJ, Kim HJ, Yoo SY, Lee KW, Ryu HW, Acharya S, Kim KM, Lee YS, Cheong JH (2019) The novel methoxetamine analogs N-ethylnorketamine hydrochloride (NENK), 2-MeO-N-ethylketamine hydrochloride (2-MeO-NEK), and 4-MeO-N-ethylketamine hydrochloride (4-MeO-NEK) elicit rapid antidepressant effects via activation of AMPA and 5-HT2 receptors. Psychopharmacology (Berl). https://doi.org/10.1007/s00213-019-05219-x

  59. Yu H, Li M, Shen X, Lv D, Sun X, Wang J, Gu X, Hu J, Wang C (2018) The Requirement of L-Type Voltage-Dependent Calcium Channel (L-VDCC) in the Rapid-Acting Antidepressant-Like Effects of Scopolamine in Mice. Int J Neuropsychopharmacol 21(2):175–186. https://doi.org/10.1093/ijnp/pyx080

    Article  CAS  PubMed  Google Scholar 

  60. Zafra F, Hengerer B, Leibrock J, Thoenen H, Lindholm D (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 9(11):3545–3550 PMCID: PMC552104

    Article  CAS  Google Scholar 

  61. Mai L, Jope RS, Li X (2002) BDNF-mediated signal transduction is modulated by GSK3beta and mood stabilizing agents. J Neurochem 82(1):75–83. https://doi.org/10.1046/j.1471-4159.2002.00939.x

    Article  CAS  PubMed  Google Scholar 

  62. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 35(7):1774–1779. https://doi.org/10.1016/j.pnpbp.2011.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 33(1):70–75. https://doi.org/10.1016/j.pnpbp.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  64. Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, Burger C, Auberson YP, Sovago J, Stockmeier CA, Buck A, Hasler G (2011) Reduced metabotropic glutamate receptor 5 density in major depression determined by [(11)C]ABP688 PET and postmortem study. Am J Psychiatry 168(7):727–734. https://doi.org/10.1176/appi.ajp.2011.09111607

    Article  PubMed  PubMed Central  Google Scholar 

  65. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. https://doi.org/10.1038/nrn2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Coleman WL, Bykhovskaia M (2009) Synapsin I accelerates the kinetics of neurotransmitter release in mouse motor terminals. Synapse 63(6):531–533. https://doi.org/10.1002/syn.20635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Camargo A, Dalmagro AP, Zeni ALB, Rodrigues ALS (2020) Guanosine potentiates the antidepressant-like effect of subthreshold doses of ketamine: possible role of pro-synaptogenic signaling pathway. J Affect Disord 271:100–108. https://doi.org/10.1016/j.jad.2020.03.186

    Article  CAS  PubMed  Google Scholar 

  68. Lanznaster D, Dal-Cim T, Piermartiri TC, Tasca CI (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679. https://doi.org/10.14336/AD.2016.0208

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pham TH, Gardier AM (2019) Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 199:58–90. https://doi.org/10.1016/j.pharmthera.2019.02.017

    Article  CAS  PubMed  Google Scholar 

  70. Fraga DB, Olescowicz G, Moretti M, Siteneski A, Tavares MK, Azevedo D, Colla ARS, Rodrigues ALS (2018) Anxiolytic effects of ascorbic acid and ketamine in mice. J Psychiatr Res 100:16–23. https://doi.org/10.1016/j.jpsychires.2018.02.006

    Article  PubMed  Google Scholar 

  71. Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, Ganzella M, Souza DO (2017) Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol 54(1):423–436. https://doi.org/10.1007/s12035-015-9660-x

    Article  CAS  PubMed  Google Scholar 

  72. Vinade ER, Schmidt AP, Frizzo ME, Izquierdo I, Elisabetsky E, Souza DO (2003) Chronically administered guanosine is anticonvulsant, amnesic and anxiolytic in mice. Brain Res 977(1):97–102. https://doi.org/10.1016/s0006-8993(03)02769-0

    Article  PubMed  Google Scholar 

  73. Harrison PJ (2002) The neuropathology of primary mood disorder. Brain 125(7):1428–1449. https://doi.org/10.1093/brain/awf149

    Article  PubMed  Google Scholar 

  74. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902. https://doi.org/10.1038/nature07455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Levy MJF, Boulle F, Steinbusch HW, DLA v d H, Kenis G, Lanfumey L (2018) Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 235(8):2195–2220. https://doi.org/10.1007/s00213-018-4950-4

    Article  CAS  Google Scholar 

  76. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus-memory and anxiety. Neurosci Biobehav Rev 28(3):273–283. https://doi.org/10.1016/j.neubiorev.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  77. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034. https://doi.org/10.1038/4151030a

  78. Lara AH, Wallis JD (2015) The role of prefrontal cortex in working memory: a mini review. Front Syst Neurosci 9:173. https://doi.org/10.3389/fnsys.2015.00173

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50(4):260–265. https://doi.org/10.1038/npp.2008.107

    Article  CAS  PubMed  Google Scholar 

  80. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  81. Mendez-David I, Tritschler L, Ali ZE, Damiens MH, Pallardy M, David DJ, Kerdine-Romer S, Gardier AM (2015) Nrf2-signaling and BDNF: A new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett 597:121–126. https://doi.org/10.1016/j.neulet.2015.04.036

    Article  CAS  PubMed  Google Scholar 

  82. Ludka FK, Zomkowski AD, Cunha MP, Dal-Cim T, Zeni AL, Rodrigues ALS, Tasca CI (2013) Acute atorvastatin treatment exerts antidepressant-like effect in mice via the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway and increases BDNF levels. Eur Neuropsychopharmacol 23(5):400–412. https://doi.org/10.1016/j.euroneuro.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  83. Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 32(1):140–144. https://doi.org/10.1016/j.pnpbp.2007.07.027

    Article  CAS  PubMed  Google Scholar 

  84. Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK (2012) Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry 71(11):996–1005. https://doi.org/10.1016/j.biopsych.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  85. Gordillo-Salas M, Pascual-Anton R, Ren J, Greer J, Adell A (2020) Antidepressant-like effects of CX717, a positive allosteric modulator of AMPA receptors. Mol Neurobiol 57(8):3498–3507. https://doi.org/10.1007/s12035-020-01954-x

    Article  CAS  PubMed  Google Scholar 

  86. Camargo A, Pazini FL, Rosa JM, Wolin IAV, Moretti M, Rosa PB, Neis VB, Rodrigues ALS (2019) Augmentation effect of ketamine by guanosine in the novelty-suppressed feeding test is dependent on mTOR signaling pathway. J Psychiatr Res 115:103–112. https://doi.org/10.1016/j.jpsychires.2019.05.017

    Article  PubMed  Google Scholar 

  87. Blasco-Serra A, Gonzalez-Soler EM, Cervera-Ferri A, Teruel-Marti V, Valverde-Navarro AA (2017) A standardization of the Novelty-Suppressed Feeding Test protocol in rats. Neurosci Lett 658:73–78. https://doi.org/10.1016/j.neulet.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  88. Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29(7):1321–1330. https://doi.org/10.1038/sj.npp.1300433

    Article  CAS  PubMed  Google Scholar 

  89. de Almeida RF, Pocharski CB, Rodrigues ALS, Elisabetsky E, Souza DO (2020) Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model. Sci Rep 10(1):8429. https://doi.org/10.1038/s41598-020-65300-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19. https://doi.org/10.1016/j.neuron.2009.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2(12):880–888. https://doi.org/10.1038/35104061

    Article  CAS  PubMed  Google Scholar 

  92. Schmidt AP, Bohmer AE, Schallenberger C, Antunes C, Tavares RG, Wofchuk ST, Elisabetsky E, Souza DO (2010) Mechanisms involved in the antinociception induced by systemic administration of guanosine in mice. Br J Pharmacol 159(6):1247–1263. https://doi.org/10.1111/j.1476-5381.2009.00597.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Multiuser Laboratory for Biological Studies (LAMEB), Central Laboratory of Electron Microscopy (LCME) and the technical staff, UFSC for support. Bettio LE was supported by a Michael Smith Foundation for Health Research (MSFHR) fellowship.

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) #449436/2014-4, #310113/2017-2, and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES). RBL and ALSR are recipients of CNPq Research Productivity Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lúcia S. Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were performed in accordance with the Guidelines of Ethic Committee on Animal Use of the Federal University of Santa Catarina (CEUA/UFSC) the guidelines laid down by the NIH (NIH Guide for the Care and Use of Laboratory Animals) in the USA. The CEUA/UFSC has approved all experimental protocols (approval numbers PP00795 and 7485180518 protocol).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, P.B., Bettio, L.E.B., Neis, V.B. et al. Antidepressant-like effect of guanosine involves activation of AMPA receptor and BDNF/TrkB signaling. Purinergic Signalling 17, 285–301 (2021). https://doi.org/10.1007/s11302-021-09779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09779-6

Keywords

Navigation