Skip to main content
Log in

Experimental Silica-based Bioceramic Composite Added with Nano-sized Bovine Hydroxyapatite: Synthesis and Characterization

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

To produce an experimental dense silica-based bioceramic composite added with nano-sized hydroxyapatite (HA) for biomedical application and physicochemical/ microstructurally characterize varying the firing temperature and the amount of binder, polyvinyl butyral (PVB).

Methods

Fumed SiO2 and nano-sized HA powder from bovine bone were ball milled aiming the mixture of powders. Groups were divided into HA (3, 5 and 10%), and PVB (1.2 and 2.4 wt.%) addition, and sintering process (1100, 1200 and 1300 °C with a 4 h plateau). The materials were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy analysis (EDX).

Results

The group fired at 1200 °C presented potentialized chemical bonds without the degradation of HA at XRD profile, based on its microstructural evolution. FTIR spectra shows the degradation of HA, with an increase of CO2 band and a loss of the calcium-phosphate bands as the temperature increases. The binder concentration showed no chemical changes in the material. 2.4 wt.% of PVB addition resulted in optimized compaction and a lower inclusion of pores or cracks, suggested by SEM images.

Conclusion

This study suggests that the match composition of SiO2 matrix with 5% of HA and 2.4 wt.% of PVB, sintered at 1200 °C, exhibit potentially superior properties to biomaterial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data are presented in the manuscript.

References

  1. Schwarz K, Milne DB (1972) Growth-promoting effects of silicon in rats. Nature 239:333–334

    Article  CAS  PubMed  Google Scholar 

  2. Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11:99–110

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Carlisle EM (1970) Silicon: a possible factor in bone calcification. Science 167(3916):279–280

    Article  CAS  PubMed  Google Scholar 

  4. Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, Bonfield W (2006) Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A 79:723–730. https://doi.org/10.1002/jbm.a.30806

    Article  CAS  PubMed  Google Scholar 

  5. Tang Q, Brooks R, Rushton N, Best S (2010) Production and characterization of HA and SiHA coatings. J Mater Sci Mater Med 21:173–181. https://doi.org/10.1007/s10856-009-3841-y

    Article  CAS  PubMed  Google Scholar 

  6. Gao T, Aro HT, Ylänen H, Vuorio E (2001) Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mrna in saos-2 osteoblasts in vitro. Biomaterials 22:1475–1483

    Article  CAS  PubMed  Google Scholar 

  7. Patel N, Best SM, Bonfield W, Gibson IR, Hing KA, Damien E, Revell PAA (2002) Comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206. https://doi.org/10.1023/a:1021114710076

    Article  CAS  PubMed  Google Scholar 

  8. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621

    Article  CAS  PubMed  Google Scholar 

  9. Mohd Pu’ad NAS, Koshy P, Abdullah HZ, Idris MI, Lee TC (2019) Syntheses of hydroxyapatite from natural sources. Heliyon 5:e01588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gibson IR, Best SM, Bonfield W (1999) Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res 44:422–428. https://doi.org/10.1002/(sici)1097-4636(19990315)44:4%3c422::aid-jbm8%3e3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  11. Coathup MJ, Samizadeh S, Fang YS, Buckland T, Hing KA, Blunn GW (2011) The osteoinductivity of silicate-substituted calcium phosphate. J Bone Joint Surg Am 93A:2219–2226. https://doi.org/10.2106/Jbjs.J.01623

    Article  Google Scholar 

  12. Wiens M, Bausen M, Natalio F, Link T, Schlossmacher U, Muller WE (2009) The role of the silicatein-alpha interactor silintaphin-1 in biomimetic biomineralization. Biomaterials 30:1648–1656. https://doi.org/10.1016/j.biomaterials.2008.12.021

    Article  CAS  PubMed  Google Scholar 

  13. Botelho CM, Lopes MA, Gibson IR, Best SM, Santos JD (2002) Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. J Mater Sci Mater Med 13:1123–1127

    Article  CAS  PubMed  Google Scholar 

  14. Kalia P, Brooks RA, Kinrade SD, Morgan DJ, Brown AP, Rushton N, Judjaohsingh R (2016) Adsorption of amorphous silica nanoparticles onto hydroxyapatite surfaces differentially alters surfaces properties and adhesion of human osteoblast cells. PLoS ONE 11:e0144780. https://doi.org/10.1371/journal.pone.0144780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borden M, Attawia M, Khan Y, Laurencin CT (2002) Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials 23:551–559

    Article  CAS  PubMed  Google Scholar 

  16. Hing KA, Revell PA, Smith N, Buckland T (2006) Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials 27:5014–5026

    Article  CAS  PubMed  Google Scholar 

  17. Sych EE, Pinchuk ND, Klimenko VP, Uvarova IV, Tovstonog AB, Tomila TV, Evich YI (2015) Synthesis and properties of Si-modified biogenic hydroxyapatite ceramics. Powder Metall Met Ceram 54:67–73. https://doi.org/10.1007/s11106-015-9681-z

    Article  CAS  Google Scholar 

  18. Tolouei R, Tan CY, Ramesh S, Sopyan I, Teng WD (2011) Effect of nano silica on the sinterability of hydroxyapatite dense bodies. Adv Mater Res 264–264:1832–1838

    Article  Google Scholar 

  19. Turner IG (2009) Ceramics and glasses. In: Narayanan R (ed) Biomedical materials. Springer, New York, pp 3–39

    Chapter  Google Scholar 

  20. Bowen P, Carry C (2002) From powders to sintered pieces, forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol 128:248–255

    Article  CAS  Google Scholar 

  21. Vallet-Regí M, Ragel CV, Salinas AJ (2003) Glasses with medical applications. Eur J Inorg Chem 6:1029–1042

    Article  Google Scholar 

  22. Gorustovich A, Roether J, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: in-vitro and in-vivo evidence. Tissue Eng B Rev 16:199–207

    Article  CAS  Google Scholar 

  23. Ferrairo BM, Mosquim V, de Azevedo-Silva LJ, Pires LA, Padovini DSS, Magdalena AG, Fortulan CA, Rubo JH, Borges AFS (2023) Production of bovine hydroxyapatite nanoparticles as a promising biomaterial via mechanochemical and sonochemical methods. Mater Chem Phys 295:127046. https://doi.org/10.1016/j.matchemphys.2022.127046

    Article  CAS  Google Scholar 

  24. Srinivasa RR, Saad AK (1997) Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J Colloid Interf Sci 185:57–67

    Article  Google Scholar 

  25. Whitby CP, Krebsz M, Booty SJ (2018) Understanding the role of hydrogen bonding in the aggregation of fumed silica particles in triglyceride solvents. J Colloid Int Sci 527:1–9

    Article  CAS  Google Scholar 

  26. Reghavan SR, Khan SA (1995) Shear-induced microstructural changes in flocculated suspensions of fumed silica. J Rheol 39:1311–1325. https://doi.org/10.1122/1.550638

    Article  Google Scholar 

  27. Yziquel F, Carreu PJ, Tanguy PA (1999) Non-linear viscoelastic behavior of fumed silica suspensions. Rheol Acta 38:14–25

    Article  CAS  Google Scholar 

  28. Herliansyah MK, Nasution DA, Hamdi M, Ide-Ektessabi A, Wildan MW, Tontowi AE (2007) Preparation and characterization of natural hydroxyapatite: a comparative study of bovine bone hydroxyapatite and hydroxyapatite from calcite. Mater Sci Forum 561–565:1441–1444

    Article  Google Scholar 

  29. Ooi C, Hamdi M, Ramesh S (2007) Properties of hydroxyapatite produced by annealing of bovine bone. Ceram Int 33:1171–1177

    Article  CAS  Google Scholar 

  30. Kothapalli C, Wei M, Vasiliev A, Shaw MT (2004) Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater 52:5655–5663

    Article  CAS  Google Scholar 

  31. Boskey A, Camacho NP (2007) FT-IR imaging of native and tissue engineered bone and cartilage. Biomaterials 28:2456–2478

    Article  Google Scholar 

  32. Mosquim V, Ferrairo BM, Vertuan M, Magdalena AG, Fortulan CA, Lisboa-Filho PN, Cesar PF, Bonfante EA, Honório HM, Sanches Borges AF (2020) Structural, chemical and optical characterizations of an experimental SiO2-Y-TZP ceramic produced by the uniaxial/isostatic pressing technique. J Mech Behav Biomed Mater 106:103749. https://doi.org/10.1016/j.jmbbm.2020.103749

    Article  CAS  PubMed  Google Scholar 

  33. Kelly JR, Benetti P (2011) Ceramic materials in dentistry: historical evolution and current practice. Aust Dent J 56:84–96. https://doi.org/10.1111/j.1834-7819.2010.01299.x

    Article  PubMed  Google Scholar 

  34. Borum L, Wilson Jr OC (2003) Surface modification of hydroxyapatite. Part II. Silica. Biomaterials 24:3681–3688. https://doi.org/10.1016/s0142-9612(03)00240-0

  35. Ayatollahi MR, Yahya MY, Shirazi HA, Hassan SA (2015) Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler. Ceram Int 41:10818–10827

    Article  CAS  Google Scholar 

  36. Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636. https://doi.org/10.1126/science.6093253

    Article  CAS  PubMed  Google Scholar 

  37. Polymer Properties Database. Available online: polymerdatabase.com. Acessed 15 January 2020

  38. Jiang L, Liao Y, Wan Q, Li W (2011) Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med 22:2429–2435. https://doi.org/10.1007/s10856-011-4438-9

    Article  CAS  PubMed  Google Scholar 

  39. Pizette P, Martin CL, Delette G, Sans F, Geneves T (2013) Green strength of binder-free ceramics. J Eur Ceram Soc 33:975–984. https://doi.org/10.1016/j.jeurceramsoc.2012.11.018

    Article  CAS  Google Scholar 

  40. Sigma-Aldrich Product Information (2012) Silica, Fumed. Sigma-Aldrich Co.

  41. Barraclough KG, Loni A, Caffull E, Canham LT (2007) Cold compaction of silicon powders without a binding agent. Mater Lett 61:485–487. https://doi.org/10.1016/j.matlet.2006.04.102

    Article  CAS  Google Scholar 

  42. Royer A, Viguie J, Heughebaert M, Heughebaert J (1993) Stoichiometry of hydroxyapatite: influence on the flexural strength. J Mater Sci Mater Med 4:76–82

    Article  CAS  Google Scholar 

  43. Wang PE, Chaki T (1993) Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci Mater Med 4:150–158

    Article  CAS  Google Scholar 

  44. Baklouti S, Bouaziz J, Chartier T, Baumard J (2001) Binder burnout and evolution of the mechanical strength of dry-pressed ceramics containing poly(vinyl acohol). J Eur Ceram Soc 21:1087–1092. https://doi.org/10.1016/S0955-2219(00)00305-8

    Article  CAS  Google Scholar 

  45. Sanati M, Andersson A (1993) DRIFT study of the oxidation and the ammoxidation of toluene over a TiO2 (B) -supported vanadia catalyst. J Mol Catal 81:51–62. https://doi.org/10.1016/0304-5102(93)80022-M

    Article  CAS  Google Scholar 

  46. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, New York, pp 229–246

    Google Scholar 

  47. Ishikawa T, Wakamura M, Kondo S (1989) Surface characterization of calcium hydroxyapatite by Fourier transform infrared spectroscopy. Langmuir 5:140–144

    Article  CAS  Google Scholar 

  48. Szepesi CJ, Cantonnet J, Kimel RA, Adair JH (2011) A critical assessment of nanometer scale zirconia green body formation by pressure filtration and uniaxial compaction. J Am Ceram Soc 94:4200–4206

    Article  CAS  Google Scholar 

  49. Dhaliwal AK, Hay JN (2002) The characterization of polyvinyl butyral by thermal analysis. Thermochim Acta 391:245–255. https://doi.org/10.1016/S0040-6031(02)00187-9

    Article  CAS  Google Scholar 

  50. El-Din NMS, Sabaa MW (1995) Polym Degrad Stabil 47:283

    Article  CAS  Google Scholar 

  51. Kuscer D, Bakarič T, Kozlevčar B, Kosec M (2013) Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior. J Phys Chem B 117:1651–1659. https://doi.org/10.1021/jp305289u

    Article  CAS  PubMed  Google Scholar 

  52. Kruse A, Jung RE, Nicholls F, Zwahlen RA, Hämmerle CHF, Weber FE (2011) Bone regeneration in the presence of a synthetic hydroxyapatite/silica oxide -based and a xenogenic hydroxyapatite -based bone substitute material. Clin Oral Impl Res 22:506–511. https://doi.org/10.1111/j.1600-0501.2010.02039.x

    Article  CAS  Google Scholar 

  53. Xu JL, Khor KA (2007) Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J Inorg Biochem 101:187–195

    Article  CAS  PubMed  Google Scholar 

  54. Huang DM, Chung TH, Hung Y, Lu F, Wu SH, Mou CY, Yao M, Chen YC (2008) Internalization of mesoporous silica nanoparticles induces transient but not sufficient osteogenic signals in human mesenchymal stem cells. Toxicol Appl Pharmacol 231:208–215

    Article  CAS  PubMed  Google Scholar 

  55. Werner J, Linner-Krcmar B, Friess W, Greil P (2002) Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials 23:4285–4294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support provided by São Paulo Research Foundation (FAPESP) and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Funding

This research was funded by São Paulo Research Foundation (FAPESP), grant number 2018/23639-0 and the Coordination for the Improvement of Higher Education Personnel (CAPES - Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Brunna Mota Ferrairo, Victor Mosquim, Lucas José de Azevedo-Silva, Luara Aline Pires and David Santos Souza Padovini. The first draft of the manuscript was written by Brunna Mota Ferrairo. The manuscript was revised by Aroldo Geraldo Magdalena, Carlos Alberto Fortulan, Paulo Noronha Lisboa-Filho, José Henrique Rubo and Ana Flávia Sanches Borges. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ana Flávia Sanches Borges.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrairo, B.M., Mosquim, V., de Azevedo-Silva, L.J. et al. Experimental Silica-based Bioceramic Composite Added with Nano-sized Bovine Hydroxyapatite: Synthesis and Characterization. Silicon 15, 7171–7181 (2023). https://doi.org/10.1007/s12633-023-02563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02563-8

Keywords

Navigation