Skip to main content

Advertisement

Log in

Production and characterization of HA and SiHA coatings

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Plasma sprayed hydroxyapatite (HA) coatings on metallic prostheses have been used clinically in dentistry and orthopedics since the mid 1980s. The coating properties are dependent on the spraying parameters. Since silicon-substituted hydroxyapatite (SiHA) has been shown to offer improved bioactivity over phase pure HA, SiHA coatings have the potential for enhanced performance in clinical application. In this study, phase pure HA and 0.8 wt% SiHA powders were synthesized with similar particle size distribution and morphology. The powders were plasma sprayed onto Ti–6Al–4V substrates at 37 kW and 40 kW plasma gun input power respectively. Four kinds of samples were prepared, HAC 37, HAC 40, SiHAC 37 and SiHAC 40. Materials characterization showed that the coatings were of relatively high phase purity. In vitro cell culture demonstrated that human osteoblast cells grew well on all samples, with the highest cell growth observed on SiHA coatings produced under the lower plasma gun input power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Heimann RB. Thermal spraying of biomaterials. Surf Coat Technol. 2006;201:2012–9.

    Article  CAS  Google Scholar 

  2. Soballe K, Hansen ES, Rasmussen HB, Hjortdal VE, Juhl GI, Pedersen CM, et al. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop. 1991;272:300–7.

    PubMed  Google Scholar 

  3. Soballe K, Hansen ES, Rasmussen HB, Bunger C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J Bone Joint Surg. 1993;75B:270–8.

    Google Scholar 

  4. Sun L, Berndt CC, Gross KA, Kucuk A. Materials fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J Biomed Mater Res Appl Biomater. 2001;58:570–92.

    Article  CAS  Google Scholar 

  5. Gross KA, Chai CS, Kannangar GS, Nissan BB. Thin hydroxyapatite coatings via sol-gel synthesis. J Mater Sci: Mater Med. 1998;9:839–43.

    Article  CAS  Google Scholar 

  6. Chai CS, Gross KA, Nissan BB. Critical aging of hydroxyapatite sol-gel solutions. Biomaterials. 1998;19:2291–6.

    Article  CAS  PubMed  Google Scholar 

  7. Ducheyne P, Raemonck WV, Heughebaert JC, Heughbaert M. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials. 1986;7:97–103.

    Article  CAS  PubMed  Google Scholar 

  8. Zhitomirsky I, Gal-Or L. Electrophoretic deposition of hydroxyapatite. J Mater Sci: Mater Med. 1997;8:213–9.

    Article  CAS  Google Scholar 

  9. De Groot L, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. Proc Inst Mech Eng H J Eng Med. 1998;212:137–47.

    Article  Google Scholar 

  10. Nieh TG, Jankowski AF, Koike J. Processing and characterization of hydroxyapatite coatings on titanium produced by magnetron sputtering. J Mater Res. 2001;16:3238–45.

    Article  CAS  ADS  Google Scholar 

  11. Wang C, Chen Z, Guan L, Liu Z, Wang P, Zhang S, et al. Structural characterization of ion beam sputtering deposited calcium phosphate coatings. Surf Coat Technol. 2000;130:39–45.

    Article  CAS  Google Scholar 

  12. Ong JL, Lucas LC. Post-deposition heat treatment for ion beam sputter deposited calcium phosphate coatings. Biomaterials. 1994;15:337–41.

    Article  CAS  PubMed  Google Scholar 

  13. Heimann RB. Plasma-spray coatings: principles and applications. New York: Weinheim and VCH; 1996.

    Book  Google Scholar 

  14. Patel N, Brooks RA, Clarke MT, Lee PM, Rushton N, Gibson IR, et al. In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model. J Mater Sci: Mater Med. 2005;6:429–40.

    Article  Google Scholar 

  15. Osaka A, Miura Y, Takeuchi K, Asada M, Takahashi K. Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. J Mater Sci: Mater Med. 1991;2:51–5.

    Article  CAS  Google Scholar 

  16. Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999;44:422–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gross KA, Berndt CC, Stephens P, Dinnebier R. Oxyapatite in hydroxyapatite coatings. J Mater Sci. 1998;33:3985–91.

    Article  CAS  Google Scholar 

  18. Carayon MT, Lacout JL. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Sol Stat Chem. 2003;172:339–50.

    Article  CAS  ADS  Google Scholar 

  19. Cheang P, Khor KA. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials. 1996;17:537–44.

    Article  CAS  PubMed  Google Scholar 

  20. Lima RS, Khor KA, Li H, Cheang P, Marple BR. HVOF spraying of nanostructure hydroxyapatite for biomedical applications. Mater Sci Eng A. 2005;396:181–7.

    Article  Google Scholar 

  21. Park E, Condrate RA, Lee SD. Infrared special investigation of plasma spray coated hydroxyapatite. Mater Lett. 1998;36:38–43.

    Article  CAS  Google Scholar 

  22. Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci: Mater Med. 1997;8:1–4.

    Article  CAS  Google Scholar 

  23. Garcia-Sanz FJ, Mayor MB, Arias JL, Pou J, Leon B, Perez-Amo M. Hydroxyapatite coatings: a comparative study between plasma-sprayed and pulsed laser deposition techniques. J Mater Sci: Mater Med. 1997;8:861–5.

    Article  CAS  Google Scholar 

  24. Patel N, Follon EL, Gibson IR, Best SM, Bonfield W. Comparison of sintering and mechanical properties of hydroxyapatite and silicon-substituted hydroxyapatite. Key Eng Mater. 2003;240–242:919–22.

    Article  Google Scholar 

  25. Weng J, Liu Q, Wolke JGC, Zhang X, De Groot K. Formation and characteristics of apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials. 1995;18:1027–35.

    Article  Google Scholar 

  26. Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res. 2004;69A:670–9.

    Article  CAS  Google Scholar 

  27. Chou L, Marek B, Wagner WR. Effects of hydroxyapatite coating crystallinity on biosolubility, cell attachment efficiency and proliferation in vitro. Biomaterials. 1999;20:977–85.

    Article  CAS  PubMed  Google Scholar 

  28. Porter AE, Best SM, Bonfield W. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications. J Biomed Mater Res. 2004;68A:133–41.

    Article  CAS  Google Scholar 

  29. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution process in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609–20.

    Article  CAS  PubMed  Google Scholar 

  30. Vallet-Regi M, Daniel A. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem. 2005;15:1509–16.

    Article  CAS  Google Scholar 

  31. Gibson IR, Huang J, Best SM, Bonfield W. Enhanced in vitro cell activity and surface apatite layer formation on novel silicon-substituted hydroxyapatites. Bioceramics. 1999;12:191–4.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Kevin Roberts for his kind assistance with sample preparation (carrying on plasma spray), and Prof. Bill Clyne for his suggestions and the use of facilities. The British Government for ORS funding, and Cambridge Overseas Trust and Trinity College for funding for Qian Tang Dr. Roger Brooks acknowledges funding from the National Institute for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Best.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Q., Brooks, R., Rushton, N. et al. Production and characterization of HA and SiHA coatings. J Mater Sci: Mater Med 21, 173–181 (2010). https://doi.org/10.1007/s10856-009-3841-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3841-y

Keywords

Navigation