Skip to main content

Advertisement

Log in

Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of lanthanum oxide (La2O3) additive on the microstructural, physical, mechanical, and in vitro bioactivity properties of hydroxyapatite (HA)-alpha alumina (α-Al2O3) composite. The monolithic HA as well as composites of HA-5 wt% α-Al2O3 and HA-5 wt% Al2O3-(0.5 wt%, 1.5 wt%, and 2.5 wt%) La2O3 were uniaxially pelleted at 350 MPa with a size of ∅11 and 11 mm2 and sintered at the temperatures ranging from 1100 to 1300 °C for 4 h. The highest mechanical strength values of 130.20 ± 6.22 MPa, 60.27 ± 9.93 MPa, and 0.96 ± 0.05 MPa m1/2 for compressive strength (σcompressive), three-point bending strength (σthree-point bending), and fracture toughness (Kıc) were obtained for monolithic HA, respectively. While the decomposition (transformation of HA to secondary phases such as beta-tricalcium phosphate (β-TCP), alpha-tricalcium phosphate (α-TCP), and calcium oxide (CaO)) ratio was about 5.7% for monolithic HA, it attained to 27.4% for HA-5wt% α-Al2O3 composite. However, addition of La2O3 to HA-5 wt% α-Al2O3 composite contributed to decreasing of decomposition from 27.4 to 22.0%. The mechanical strength values of σcompressive of 214 ± 32.50 MPa, σthree-point bending of 75.70 ± 2.40 MPa, and Kıc of 1.95 ± 0.10 MPa m1/2 were obtained for HA-5wt% α-Al2O3 composite. SEM images exhibited that α-Al2O3 led to decreasing the in vitro bioactivity of HA. However, La2O3 additive contributed to improvement of the mechanical as well as bioactivity properties of HA-5 wt% α-Al2O3 composite. HA-5 wt% α-Al2O3-0.5 wt% La2O3 composite can be used as a bioceramic in human body, because it has enough mechanical properties as well as its desirable in vitro bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prakasam, M., Locs, J., Salma-Ancane, K., Loca, D., Largeteau, A., Berzina-Cimdina, L.: Fabrication, properties and applications of dense hydroxyapatite: a review. J. Funct. Biomater. 6, 1099–1140 (2015)

    CAS  Google Scholar 

  2. Ghazanfari, S.M.H., Zamanian, A.: Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceram. Int. 39, 9835–9844 (2013)

    CAS  Google Scholar 

  3. Champion, E., Gautier, S., Bernache-Assollant, D.: Characterization of hot pressed Al2O3-platelet reinforced hydroxyapatite composites. J. Mater. Sci. Mater. Med. 7, 125–130 (1996)

    CAS  Google Scholar 

  4. Brzezińska-Miecznik, J., Haberko, K., Sitarz, M., Bućko, M.M., Macherzyńska, B., Lach, R.: Natural and synthetic hydroxyapatite/zirconia composites: a comparative study. Ceram. Int. 42, 11126–11135 (2016)

    Google Scholar 

  5. Lih-Jyh, F., Ya-Jing, H., Wen-Cheng, C., Dan-Jae, L.: Preparation of micro-porous bioceramic containing silicon-substituted hydroxyapatite and beta-tricalcium phosphate. Mater. Sci. Eng. C. 75, 798–806 (2017)

    Google Scholar 

  6. Hannora, A.E., Ataya, S.: Structure and compression strength of hydroxyapatite/titania nanocomposites formed by high energy ball milling. J. Alloys Compd. 658, 222–233 (2016)

    CAS  Google Scholar 

  7. Bozkurt, Y., Gokce, H., Pazarlioglu, S., Salman, S.: The effect of yttrium oxide reinforcement on the microstructural and mechanical properties of biologically derived hydroxyapatite. Acta Phys. Pol. A. 127(4), 1403–1406 (2015)

    CAS  Google Scholar 

  8. Bartonickova, E., Vojtisek, J., Tkacz, J., Porizka, J., Masilko, J., Moncekova, M., Parizek, L.: Porous Ha/alumina composites intended for bone-tissue engineering. Mater. Technol. 51(4), 631–636 (2017)

    CAS  Google Scholar 

  9. Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Hesabi, Z.R., Taheri, M., Sadrnezhaad, S.K.: Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram. Int. 39, 2197–2206 (2013)

    CAS  Google Scholar 

  10. Afzal, M.A.F., Kesarwani, P., Reddy, K.M., Kalmodia, S., Basu, B., Balani, K.: Functionally graded hydroxyapatite-alumina-zirconia biocomposite: synergy of toughness and biocompatibility. Mater. Sci. Eng. C. 32, 1164–1173 (2012)

    CAS  Google Scholar 

  11. Li, J., Fartash, B., Herrnansson, L.: Hydroxyapatite-alumina composites and bone-bonding. Biomater. 16, 417–422 (1995)

    CAS  Google Scholar 

  12. Sivaperumal, V.R., Mani, R., Nachiappan, M.S., Arumugam, K.: Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Mater. Charact. 134, 416–421 (2017)

    CAS  Google Scholar 

  13. Tayebi, S., Mirjalili, F., Samadi, H., Nemati, A.: The effect of additives on the properties of HAp-Al2O3 nano-composite powders. J. Ceram. Process. Res. 17(10), 1033–1041 (2016)

    Google Scholar 

  14. Evis, Z., Doremus, R.H.: Effect of AlF3, CaF2 and MgF2 on hot-pressed hydroxyapatite-nanophase alpha-alumina composites. Mater. Res. Bull. 43, 2643–2651 (2008)

    CAS  Google Scholar 

  15. Sung-Jin, K., Hee-Gon, B., Jun-Ho, S., Sang-Yeup, P.: Effect of fluoride additive on the mechanical properties of hydroxyapatite/alumina composites. Ceram. Int. 35, 1647–1650 (2009)

    Google Scholar 

  16. Hae-Won, K., Young-Hag, K., Seung-Beom, S., Hyoun-Ee, K.: Properties of fluoridated hydroxyapatite-alumina biological composites densified with addition of CaF2. Mater. Sci. Eng. C. 23, 515–521 (2003)

    Google Scholar 

  17. Bulut, B., Erkmen, Z.E., Kayali, E.S.: Biocompatibility of hydroxyapatite-alumina and hydroxyapatite-zirconia composites including commercial inert glass (CIG) as a ternary component. J. Ceram. Sci. Tech. 07(03), 263–276 (2016)

    Google Scholar 

  18. Kalkandelen, C., Gunduz, O., Akan, A., Oktar, F.N.: Part 1: clinoptilolite-alumina-hydroxyapatite composites for biomedical engineering. J. Aust. Ceram. Soc. 53, 91–99 (2017)

    CAS  Google Scholar 

  19. Li-Li, W., Xiu-Feng, W., Xu, D., Hong-Tao, J.: Preparation of HA-bioglass-Al2O3 biological composite. Mater. Manuf. Process. 28, 980–983 (2013)

    Google Scholar 

  20. Yelten, A., Yilmaz, S., Oktar, F.N.: Sol-gel derived alumina-hydroxyapatite-tricalcium phosphate porous composite powders. Ceram. Int. 38, 2659–2665 (2012)

    CAS  Google Scholar 

  21. Guidara, A., Chaari, K., Bouaziz, J.: Effect of titania additive on structural and mechanical properties of alumina-fluorapatite composites. J. Mater. Sci. Technol. 28(12), 1130–1136 (2012)

    CAS  Google Scholar 

  22. Branda, F., Arcobello-Varlese, F., Costantini, A., Luciani, G.: Effect of the substitution of M2O3 (M=La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO.2SiO2 glass. Biomater. 23, 711–716 (2002)

    CAS  Google Scholar 

  23. Shin-Ike, M., Tsutsui, J., Tanaka, A., Murayama, S., Fujita, A.: Attempts to improve the strength of sintered lanthanum-containing hydroxyapatites. J. Osaka Dent. Uni. 52, 854–861 (1989)

    Google Scholar 

  24. Tanaka, A., Nishimura, Y., Sakaki, T., Fujita, A., Shin-Ike, T.: Histologic evaluation of tissue response to sintered lanthanum-containing hydroxyapatites subcutaneously implanted in rats. J. Osaka Dent. Uni. 23, 111–116 (1989)

    CAS  Google Scholar 

  25. Bozkurt, Y., Pazarlioglu, S., Gokce, H., Gurler, I., Salman, S.: Hydroxyapatite lanthanum oxide composites. Acta Phys. Pol. A. 127(4), 1407–1409 (2015)

    Google Scholar 

  26. Khoshsima, S., Yilmaz, B., Tezcaner, A., Evis, Z.: Structural, mechanical and biological properties of hydroxyapatite-zirconia-lanthanum oxide composites. Ceram. Int. 42, 15773–15779 (2016)

    CAS  Google Scholar 

  27. Khoshsima, S., Alshemary, A.Z., Tezcaner, A., Surdem, S., Evis, Z.: Impact of B2O3 and La2O3 addition on structural, mechanical and biological properties of hydroxyapatite. Process. Appl. Ceram. 12(2), 143–152 (2018)

    CAS  Google Scholar 

  28. Sato, K., Yugami, H., Hashida, T.: Effect of rare-earth oxides on fracture properties of ceria ceramics. J. Mater. Sci. 39, 5765–5770 (2004)

    CAS  Google Scholar 

  29. Majling, J., Znáik, P., Palová, A., Stevĭk, S., Kovalĭk, S., Agrawal, D.K., Roy, R.: Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res. 12(1), 198–202 (1997)

    CAS  Google Scholar 

  30. Rahimiana, M., Ehsani, N., Parvin, N., reza Baharvandi, H.: The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 209, 5387–5393 (2009)

    Google Scholar 

  31. Kwon, J., Dai, M., Halls, M.D., Langereis, E., Chabal, Y.J., Gordon, R.G.: In situ infrared characterization during atomic layer deposition of lanthanum oxide. J. Phys. Chem. C. 113, 654–660 (2009)

    CAS  Google Scholar 

  32. ASTM C1161-94 (1996) Standard test method for flexural strength of advanced ceramics at ambient temperature. Annual Book of ASTM Standards, USA

  33. Kokubo, T., Yamamuro, T., Hench, L.L., Wilson, J.: Handbook on bioactive ceramics: bioactive glasses and glass-ceramics, vol. 1. CRC Press, Boca Raton (1990)

    Google Scholar 

  34. ASTM F 1185-88 (1993) Standard specification for composition of ceramic hydroxylapatite for surgical implants. American Society for Testing and Materials, 2000, West Conshohocken, PA, USA

  35. Steele, F.A., Davey, W.P.: The crystal structure of tricalcium aluminate. J. Am. Chem. Soc. 51(8), 2283–2293 (1975)

    Google Scholar 

  36. Palchesko, R.N., McGowan, K.A., Gawalt, E.S.: Surface immobilization of active vancomycin on calcium aluminum oxide. Mater. Sci. Eng. C. 31, 637–642 (2011)

    CAS  Google Scholar 

  37. Tas, C.A.: Chemical preparation of the binary compounds in the calcia-alumina system by self-propagating combustion synthesis. J. Am. Ceram. Soc. 81(11), 2853–2863 (1998)

    CAS  Google Scholar 

  38. Evis, Z., Doremus, R.H.: A study of phase stability and mechanical properties of hydroxylapatite-nanosize α-alumina composites. Mater. Sci. Eng. C. 27, 421–425 (2007)

    CAS  Google Scholar 

  39. Viswanath, B., Ravishankar, N.: Interfacial reactions in hydroxyapatite/alumina nanocomposites. Scr. Mater. 55, 863–866 (2006)

    CAS  Google Scholar 

  40. Ueda, J., Shinoda, T., Tanabe, S.: Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+. Opt. Mater. 41, 84–89 (2015)

    CAS  Google Scholar 

  41. Kazin, P.E., Pogosova, M.A., Trusov, L.A., Kolesnik, I.V., Magdysyuk, O.V., Dinnebier, R.E.: Crystal structure details of La- and Bi-substituted hydroxyapatites: evidence for LaO+ and BiO+ with a very short metal-oxygen bond. J. Solid State Chem. 237, 349–357 (2016)

    CAS  Google Scholar 

  42. Choi, M., Janotti, A., Van de Walle, C.G.: Native point defects and dangling bonds in α-Al2O3. J. Appl. Phys. 113, 044501 (2013)

    Google Scholar 

  43. Krishna, R.H., Nagabhushana, B.M., Nagabhushana, H., Chakradhar, R.P.S., Murthy, N.S., Sivaramakrishna, R., Shivakumara, C., Rao, J.L., Thomas, T.: Combustion synthesis approach for spectral tuning of Eu doped CaAl2O4 phosphors. J. Alloys Compd. 589, 596–603 (2014)

    Google Scholar 

  44. Mansour, S.F., Hemeda, O.M., El-Dek, S.I., Salem, B.I.: Influence of La doping and synthesis method on the properties of CoFe2O4 nanocrystals. J. Magn. Magn. Mater. 420, 7–18 (2016)

    CAS  Google Scholar 

  45. Cerrillo, J.G., Mendoza, A.N.C., Romero, P.M.M., Granadosa, A.H., Hu, H.: Improvement of the morphological and electrical characteristics of Al3+, Fe3+ and Bi3+-doped TiO2 compact thin films and their incorporation into hybrid solar cells. Mater. Sci. Semicond. Process. 72, 106–114 (2017)

    Google Scholar 

  46. Chiba, A., Kimura, S., Raghukandan, K., Morizono, Y.: Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction. Mater. Sci. Eng. A. 350, 179–183 (2003)

    Google Scholar 

  47. Evis, Z.: Al3+ doped nano-hydroxyapatites and their sintering characteristics. J. Ceram. Soc. Jpn. 114, 1001–1004 (2006)

    CAS  Google Scholar 

  48. Guo, D.G., Wang, A.H., Han, Y., Xu, K.W.: Characterization, physicochemical properties and biocompatibility of La-incorporated apatites. Acta Biomater. 5, 3512–3523 (2009)

    CAS  Google Scholar 

  49. Yang, H., Zhang, L., Xu, K.W.: Effect of fabrication processes on orientation growth of La/HAP crystal. J. Mater. Process. Technol. 207, 276–282 (2008)

    CAS  Google Scholar 

  50. Lou, W., Dong, Y., Zhang, H., Jin, Y., Hu, X., Ma, J., Liu, J., Wu, G.: Preparation and characterization of lanthanum-incorporated hydroxyapatite coatings on titanium substrates. Int. J. Mol. Sci. 16, 21070–21086 (2015)

    CAS  Google Scholar 

  51. Aykul, A., Kutbay, I., Evis, Z., Usta, M.: Effect of YF3 on the phase stability and sinterability of hydroxyapatite-partially stabilized zirconia composites. Ceram. Int. 39, 7869–7877 (2013)

    CAS  Google Scholar 

  52. Rodríguez-Lorenzo, L.M., Vallet-Regí, M., Ferreira, J.M.F.: Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomater. 22, 583–588 (2001)

    Google Scholar 

  53. Gu, Y.W., Loh, N.H., Khor, K.A., Tor, S.B., Cheang, P.: Spark plasma sintering of hydroxyapatite powders. Biomater. 23, 37–43 (2002)

    CAS  Google Scholar 

  54. Khalil, K.A., Kim, S.W., Kim, H.Y.: Consolidation and mechanical properties of nanostructured hydroxyapatite-(ZrO2+3mol%Y2O3) bioceramics by high-frequency induction heat sintering. Mater. Sci. Eng. A. 456, 368–372 (2007)

    Google Scholar 

  55. Gu, Y.W., Khor, K.A., Cheang, P.: Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomater. 25, 4127–4134 (2004)

    CAS  Google Scholar 

  56. Patel, N.R., Gohil, P.P.: A review on biomaterials: scope, applications & human anatomy significance. Int. J. Emerging Technol. Adv. Eng. 2(4), 91–101 (2012)

    Google Scholar 

  57. Kim, H.W., Noh, Y.J., Koh, Y.H., Kim, H.E.: Enhanced performance of flourine substituted hydroxyapatite composites for hard tissue engineering. J. Mater. Sci. Mater. Med. 14, 899–904 (2003)

    CAS  Google Scholar 

  58. Gautier, S., Champion, E., Bernache-Assollant, D.: Toughening characterization in alumina platelets-hydroxyapatite matrix composites. J. Mater. Sci. Mater. Med. 10, 533–540 (1999)

    CAS  Google Scholar 

  59. Kim, S., Kong, Y.M., Lee, I.S., Kim, H.E.: Effect of calcinations of starting powder on mechanical properties of hydroxyapatite-alumina bioceramic composite. J. Mater. Sci. Mater. Med. 13, 307–310 (2002)

    CAS  Google Scholar 

  60. Thangamani, N., Chinnakali, K., Gnanam, F.D.: The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite. Ceram. Int. 28, 355–362 (2002)

    CAS  Google Scholar 

  61. Kobayashi, S., Kawai, W., Wakayama, S.: The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 17, 1089–1093 (2006)

    CAS  Google Scholar 

  62. Kothapalli, C., Wei, M., Vasiliev, A., Shaw, M.T.: Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Mater. 52, 5655–5663 (2004)

    CAS  Google Scholar 

  63. Zhang, J., Maeda, M., Kotobuki, N., Hirose, M., Ohgushi, H., Jiang, D., Iwasa, M.: Aqueous processing of hydroxyapatite. Mater. Chem. Phys. 99, 398–404 (2006)

    CAS  Google Scholar 

  64. Seo, D.S., Lee, J.K.: Dissolution-resistance of glass-added hydroxyapatite composites. Met. Mater. Int. 15(2), 265–271 (2009)

    CAS  Google Scholar 

  65. Chen, Q.Z., Rezwan, K., Armitage, D., Nazhat, S.N., Boccaccini, A.R.: The surface functionalization of 45S5 bioglass-based glass-ceramic scaffolds and its impact on bioactivity. J. Mater. Sci. Mater. Med. 17, 979–987 (2006)

    CAS  Google Scholar 

Download references

Funding

The authors thank the economic support of Scientific Research Centre of Marmara University (Project No. FEN-K-150218-0051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Pazarlioglu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazarlioglu, S., Salman, S. Effect of lanthanum oxide additive on the sinterability, physical/mechanical, and bioactivity properties of hydroxyapatite-alpha alumina composite. J Aust Ceram Soc 55, 1195–1209 (2019). https://doi.org/10.1007/s41779-019-00336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00336-4

Keywords

Navigation