Skip to main content
Log in

Frailty syndrome: Visceral adipose tissue and frailty in patients with symptomatic severe aortic stenosis

  • Published:
The journal of nutrition, health & aging

Abstract

Background/Objectives

In patients with severe aortic stenosis (AS), frailty is a clinically relevant measure of increased vulnerability that should be included in the preoperative risk assessment. Bioelectrical impedance analysis (BIA) derived phase angle (PA) reflects cell membrane integrity and function. Few studies are available on the relative contribution of adiposity distribution on frailty, and about the influences of frailty and visceral obesity in PA value. Therefore, we aimed to evaluate associations among frailty, visceral fat depots and PA in patients with symptomatic severe AS.

Methods

In a cohort of patients with symptomatic severe AS and preserved ejection fraction, we examined the associations between frailty, visceral fat depots and bioelectrical impedance analysis (BIA) derived phase angle (PA); and between visceral fat and PA. Frailty was defined according the Fried et al. scale criteria and the body fat distribution was determined by multidetector computed tomography and by BIA.

Results

Of the fifty-five included patients, 26 were frail (47%). Adjusting for age and gender, frailty was associated with indexed epicardial adipose tissue volume (EATVi) (the odds of frailty increased 4.1-fold per additional 100 cm3/m2 of EAT [95% confidence interval (CI) of 1.03 to 16.40, p=0.04] and with PA (OR of 0.50, 95% CI, 0.26 to 0.97, p=0.04), but not with body mass index (BMI), waist circumference (WC), indexed total, visceral and subcutaneous abdominal fat areas (TAFAi, VAFAi and SAFAi) nor with indexed mediastinal adipose tissue volume (MATVi). In an age and gender adjusted linear model, PA was inversely correlated with EATVi (β=-0.008, 95% CI, -0.016 to -0.001, p=0.03), but not with BMI, WC, nor with MATVi, VAFAi, SAFAi and TAFAi.

Conclusions

In patients with symptomatic severe AS, EATVi is associated with frailty, independently of age and gender, but not with MAFVi or VAFAi. Moreover, frailty and EATVi are associated with impaired cell membrane integrity and function assessed by PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Table 3
Figure 1
Figure 2
Table 4
Table 5

Similar content being viewed by others

References

  1. O’Brien SM, Shahian DM, Filardo G, Ferraris VA, Haan CK, Rich JB, et al. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: part 2—isolated valve surgery. The Annals of Thoracic Surgery. 2009;88(1 Suppl):S23–42.

    Article  PubMed  Google Scholar 

  2. Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, et al. EuroSCORE II. European Journal of Cardio-thoracic Surgery: official journal of the European Association for Cardio-thoracic Surgery. 2012;41(4):734–44; discussion 44-5.

    Article  Google Scholar 

  3. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, 3rd, Guyton RA, et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: executive summary: a report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440–92.

    Article  PubMed  Google Scholar 

  4. Ferrucci L, Cavazzini C, Corsi A, Bartali B, Russo CR, Lauretani F, et al. Biomarkers of frailty in older persons. Journal of Endocrinological Investigation. 2002;25(10 Suppl):10–5.

    CAS  PubMed  Google Scholar 

  5. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2001;56(3):M146–56.

    Article  CAS  PubMed  Google Scholar 

  6. Woods NF, LaCroix AZ, Gray SL, Aragaki A, Cochrane BB, Brunner RL, et al. Frailty: emergence and consequences in women aged 65 and older in the Women’s Health Initiative Observational Study. Journal of the American Geriatrics Society. 2005;53(8):1321–30.

    Article  PubMed  Google Scholar 

  7. Aarts S, Patel KV, Garcia ME, Van Den Akker M, Verhey FRJ, Metsemakers JFM, et al. Co-presence of multimorbidity and disability with frailty: An examination of heterogeneity in the frail older population. J Frailty Aging. 2015;4(3):131–8.

    CAS  PubMed  Google Scholar 

  8. Vellas B. Implementing Frailty Screening, Assessment, and Sustained Intervention: The experience of the Gerontopole. The Journal of Nutrition, Health & Aging. 2015;19(6):673–80.

    Article  CAS  Google Scholar 

  9. Santos-Eggimann B, Cuenoud P, Spagnoli J, Junod J. Prevalence of frailty in middleaged and older community-dwelling Europeans living in 10 countries. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2009;64(6):675–81.

    Article  PubMed  Google Scholar 

  10. Green P, Woglom AE, Genereux P, Daneault B, Paradis JM, Schnell S, et al. The impact of frailty status on survival after transcatheter aortic valve replacement in older adults with severe aortic stenosis: a single-center experience. JACC Cardiovascular Interventions. 2012;5(9):974–81.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ewe SH, Ajmone Marsan N, Pepi M, Delgado V, Tamborini G, Muratori M, et al. Impact of left ventricular systolic function on clinical and echocardiographic outcomes following transcatheter aortic valve implantation for severe aortic stenosis. American Heart Journal. 2010;160(6):1113–20.

    Article  PubMed  Google Scholar 

  12. Kalyani RR, Varadhan R, Weiss CO, Fried LP, Cappola AR. Frailty status and altered glucose-insulin dynamics. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2012;67(12):1300–6.

    Article  PubMed  Google Scholar 

  13. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clinical Nutrition (Edinburgh, Scotland). 2004;23(5):1226–43.

    Article  Google Scholar 

  14. Selberg O, Selberg D. Norms and correlates of bioimpedance phase angle in healthy human subjects, hospitalized patients, and patients with liver cirrhosis. European Journal of Applied Physiology. 2002;86(6):509–16.

    Article  CAS  PubMed  Google Scholar 

  15. Bosy-Westphal A, Danielzik S, Dorhofer RP, Later W, Wiese S, Muller MJ. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. JPEN Journal of Parenteral and enteral Nutrition. 2006;30(4):309–16.

    Article  PubMed  Google Scholar 

  16. Lukaski HCaS, M. G. Phase angle as a prognostic indicator in cancer. Procedings of the AAAI. 2011;1:37–41.

    Google Scholar 

  17. Gupta D, Lammersfeld CA, Burrows JL, Dahlk SL, Vashi PG, Grutsch JF, et al. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. The American Journal of Clinical Nutrition. 2004;80(6):1634–8.

    CAS  PubMed  Google Scholar 

  18. Mushnick R, Fein PA, Mittman N, Goel N, Chattopadhyay J, Avram MM. Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients. Kidney International Supplement. 2003(87):S53-6.

    Google Scholar 

  19. Gupta D, Lis CG, Dahlk SL, Vashi PG, Grutsch JF, Lammersfeld CA. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. The British Journal of Nutrition. 2004;92(6):957–62.

    Article  CAS  PubMed  Google Scholar 

  20. Lang RM BM, Devereux RB, et al. Recommendations for chamber quantification. European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology. 2006;7:79–108.

    Article  Google Scholar 

  21. Fess. E. Grip strength. In: Casanova J, editor. Clinical assessment recommendations. 2nd ed. Chicago: American Society of Hand Therapists; 1992. p. p. 41–5.

    Google Scholar 

  22. Stewart A, Marfell-Jones, M., Olds, T., and de Ridder, H. International standards for anthropometric assessment. ISAK: Lower Hutt, New Zealand. 2011.

    Google Scholar 

  23. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20—94 years. Nutrition. 2001;17(3):248–53.

    Article  CAS  PubMed  Google Scholar 

  24. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American Journal of Clinical Nutrition. 1985;41(4):810–7.

    CAS  PubMed  Google Scholar 

  25. Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5(5):303–11; discussion 12-3.

    PubMed  Google Scholar 

  26. Borkan GA, Gerzof SG, Robbins AH, Hults DE, Silbert CK, Silbert JE. Assessment of abdominal fat content by computed tomography. The American Journal of Clinical Nutrition. 1982;36(1):172–7.

    CAS  PubMed  Google Scholar 

  27. Yoshizumi T, Nakamura T, Yamane M, Islam AH, Menju M, Yamasaki K, et al. Abdominal fat: standardized technique for measurement at CT. Radiology. 1999;211(1):283–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ashwell M, Cole TJ, Dixon AK. Obesity: new insight into the anthropometric classification of fat distribution shown by computed tomography. British Medical Journal (Clinical research ed). 1985;290(6483):1692–4.

    Article  CAS  PubMed Central  Google Scholar 

  29. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7(2):79–108.

    Article  PubMed  Google Scholar 

  30. Rosenhek R, Binder T, Porenta G, Lang I, Christ G, Schemper M, et al. Predictors of outcome in severe, asymptomatic aortic stenosis. The New England journal of medicine. 2000;343(9):611–7.

    Article  CAS  PubMed  Google Scholar 

  31. Shah K, Hilton TN, Myers L, Pinto JF, Luque AE, Hall WJ. A new frailty syndrome: central obesity and frailty in older adults with the human immunodeficiency virus. Journal of the American Geriatrics Society. 2012;60(3):545–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blaum CS, Xue QL, Michelon E, Semba RD, Fried LP. The association between obesity and the frailty syndrome in older women: the Women’s Health and Aging Studies. Journal of the American Geriatrics Society. 2005;53(6):927–34.

    Article  PubMed  Google Scholar 

  33. Hubbard RE, Lang IA, Llewellyn DJ, Rockwood K. Frailty, body mass index, and abdominal obesity in older people. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2010;65(4):377–81.

    Article  PubMed  Google Scholar 

  34. Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell ML, Korinek J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. International Journal of Obesity (2005). 2008;32(6):959–66.

    Article  CAS  PubMed Central  Google Scholar 

  35. Sampaio LR, Simoes EJ, Assis AM, Ramos LR. Validity and reliability of the sagittal abdominal diameter as a predictor of visceral abdominal fat. Arquivos brasileiros de endocrinologia e metabologia. 2007;51(6):980–6.

    Article  PubMed  Google Scholar 

  36. Illouz F, Roulier V, Rod A, Gallois Y, Pelle CP, Aube C, et al. Distribution of adipose tissue: quantification and relationship with hepatic steatosis and vascular profiles of type 2 diabetic patients with metabolic syndrome. Diabetes & Metabolism. 2008;34(1):68–74.

    Article  CAS  Google Scholar 

  37. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7.

    Article  CAS  PubMed  Google Scholar 

  38. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular Medicine. 2005;2(10):536–43.

    Article  PubMed  Google Scholar 

  39. Ormseth MJ, Lipson A, Alexopoulos N, Hartlage GR, Oeser AM, Bian A, et al. Association of epicardial adipose tissue with cardiometabolic risk and metabolic syndrome in patients with rheumatoid arthritis. Arthritis Care & Research. 2013;65(9):1410–5.

    Article  CAS  Google Scholar 

  40. Sam S, Haffner S, Davidson MH, D’Agostino RB, Sr., Feinstein S, Kondos G, et al. Relationship of abdominal visceral and subcutaneous adipose tissue with lipoprotein particle number and size in type 2 diabetes. Diabetes. 2008;57(8):2022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu Y, Cheng X, Hong K, Huang C, Wan L. How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coronary Artery Disease. 2012;23(4):227–33.

    Article  PubMed  Google Scholar 

  42. Erdogan T, Cetin M, Kocaman SA, Durakoglugil ME, Ergul E, Ugurlu Y, et al. Epicardial adipose tissue is independently associated with increased left ventricular mass in untreated hypertensive patients: an observational study. Anadolu kardiyoloji dergisi: AKD = the Anatolian Journal of Cardiology. 2013;13(4):320–7.

    CAS  PubMed  Google Scholar 

  43. Capoulade R, Larose E, Mathieu P, Clavel MA, Dahou A, Arsenault M, et al. Visceral adiposity and left ventricular mass and function in patients with aortic stenosis: the PROGRESSA study. The Canadian Journal of Cardiology. 2014;30(9):1080–7.

    Article  PubMed  Google Scholar 

  44. Cetin M, Kocaman SA, Durakoglugil ME, Erdogan T, Ergul E, Dogan S, et al. Effect of epicardial adipose tissue on diastolic functions and left atrial dimension in untreated hypertensive patients with normal systolic function. Journal of Cardiology. 2013;61(5):359–64.

    Article  PubMed  Google Scholar 

  45. Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, et al. Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. The American Journal of Cardiology. 2014;114(11):1663–9.

    Article  PubMed  Google Scholar 

  46. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6.

    Article  PubMed  Google Scholar 

  47. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovascular Diabetology. 2006;5:1.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. International Journal of Obesity. 1990;14(12):1013–22.

    CAS  PubMed  Google Scholar 

  49. Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. International Journal of Cardiology. 2012;158(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  50. Oikawa M, Owada T, Yamauchi H, Misaka T. Epicardial adipose tissue reflects the presence of coronary artery disease: comparison with abdominal visceral adipose tissue. BioMed Research International. 2015;2015:483982.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin J, Lopez EF, Jin Y, Van Remmen H, Bauch T, Han HC, et al. Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms. Experimental Gerontology. 2008;43(4):296–306.

    Article  CAS  PubMed  Google Scholar 

  52. Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and agerelated sarcopenia. Current Opinion in Clinical Nutrition and Metabolic Care. 2012;15(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  53. Wilhelm-Leen ER, Hall YN, Horwitz RI, Chertow GM. Phase angle, frailty and mortality in older adults. Journal of General Internal Medicine. 2014;29(1):147–54.

    Article  PubMed  Google Scholar 

  54. Visser M, van Venrooij LM, Wanders DC, de Vos R, Wisselink W, van Leeuwen PA, et al. The bioelectrical impedance phase angle as an indicator of undernutrition and adverse clinical outcome in cardiac surgical patients. Clinical Nutrition (Edinburgh, Scotland). 2012;31(6):981–6.

    Article  Google Scholar 

  55. Doesch C, Suselbeck T, Leweling H, Fluechter S, Haghi D, Schoenberg SO, et al. Bioimpedance analysis parameters and epicardial adipose tissue assessed by cardiac magnetic resonance imaging in patients with heart failure. Obesity (Silver Spring, Md). 2010;18(12):2326–32.

    Article  Google Scholar 

  56. Doesch C, Haghi D, Suselbeck T, Schoenberg SO, Borggrefe M, Papavassiliu T. Impact of functional, morphological and clinical parameters on epicardial adipose tissue in patients with coronary artery disease. Circulation Journal: official journal of the Japanese Circulation Society. 2012;76(10):2426–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marília Pinheiro.

Additional information

Both authors contributed equally for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, M., Mancio, J., Conceição, G. et al. Frailty syndrome: Visceral adipose tissue and frailty in patients with symptomatic severe aortic stenosis. J Nutr Health Aging 21, 120–128 (2017). https://doi.org/10.1007/s12603-016-0795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-016-0795-x

Key words

Navigation