Skip to main content
Log in

Coupling N-doping and confined Co3O4 on carbon nanotubes by polydopamine coating strategy for pleiotropic water purification

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The development of effective and sustainable solutions for pleiotropic water purification becomes urgent and attractive. Heterogeneous Fenton-like catalysts for activation of peroxymonosulfate (PMS) to purify organic wastewater show great promise. In this work, by tuning metal loading with an in-situ polydopamine coating strategy, oxygen vacancy-enriched Co3O4 loading on N-doped carbon nanotubes (CNTs) were constructed to enhance PMS activation efficiency for pollutants degradation. Impressively, the obtained modified CNTs afford a well-developed N-containing network structure, which is further endowed with abundant Co(II)/Co(III) redox cycles and significant metal–carbon interactions. In particular, the surface N doping in CNTs might induce the oriented enrichment of pollutants around the catalyst, which reduces the migration distance and correspondingly improves the utilization of reactive oxidative species. The electron transfer efficiency of the catalyst can be further improved by incorporating oxygen vacancy-enriched Co3O4. The performance results show that the optimal NC/Co-1 could mineralize 20 × 10−6 of bisphenol A (BPA) by almost 98% in 8 min. A low reaction activation energy (26.05 kJ·mol−1) in BPA degradation was demonstrated by the NC/Co-1. More importantly, NC/Co-1 can inherit excellent degradation performance towards oxytetracycline, 2, 4-dichlorophenol, and tetracycline, showing wide practical flexibility. In addition, by virtue of the photothermal conversion property, NC/Co-1 achieves an additive function for interfacial solar water evaporation (1.84 kg·m−2·h−1, 112.51%), showing impressive potential for clean water recovery under complicated environmental pollution conditions.

Graphical abstract

摘要

开发有效和可持续的多效性水净化治理方案是紧迫并吸引人的. 非均相芬顿类催化剂催化过氧单硫酸盐(PMS)用于净化有机废水具有广阔的应用前景. 本研究通过原位聚多巴胺包覆策略并调控金属负载, 构建了富氧空位的Co3O4负载在N掺杂碳纳米管(CNTs)上, 以获得更高的PMS活化效率和污染物降解性能. 令人印象深刻的是, 获得的碳纳米管具有发达的含N的网络结构, 并表现出Co(II)/Co(III)非常规氧化还原循环对和显著的金属-碳相互作用. 尤其, 碳纳米管中N的表面掺杂诱导了催化剂周围污染物的定向富集, 减少了迁移距离, 提高了活性氧化物质的利用率。富氧Co3O4的引入提高了催化剂的电子传递效率. 结果表明, 最优的NC/Co-1在8 min内矿化双酚A (BPA)的效率接近98%, 并具有一个较低的反应活化能(26.05 kJ·mol−1). NC/Co-1对土霉素, 2,4 -二氯酚和四环素具有优良的降解性能。此外, 凭借光热转换特性, NC/Co-1展现了界面太阳能水蒸发的附加功能(1.84 kg·m−2·h−1, 112.5%), 显示出材料在复杂环境污染条件下良好的清洁水回收潜力.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ye JC, Zhao QS, Liang JW. Bioremediation of aniline aerofloat wastewater at extreme conditions using a novel isolate Burkholderia sp. WX-6 immobilized on biochar. J Hazard Mater. 2023;456:131668. https://doi.org/10.1016/j.jhazmat.2023.131668.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang HD, Zhou YR, Zhang YL, Hu ZY, Gao XM, Wang XN, Wu ZX. Two-dimensional MoS2 lattice constrained Cu(I) enables high activity and superior stability in visible-light-assisted peroxymonosulfate activation. Sep Purif Technol. 2023;315:123671. https://doi.org/10.1016/j.seppur.2023.123671.

    Article  CAS  Google Scholar 

  3. Tan JQ, Chen XM, Shang MR, Cui JN, Li DY, Yang F, Zhang Z, Zhang H, Wu QT, Li YT, Lin XT. N-doped biochar mediated peroxydisulfate activation for selective degradation of bisphenol a: the key role of potential difference-driven electron transfer mechanism. Chem Eng J. 2023;468:143476. https://doi.org/10.1016/j.cej.2023.143476.

    Article  CAS  Google Scholar 

  4. Xia YT, Li XM, Wu Y, Chen Z, Pi ZJ, Duan AB, Liu JW. Tetracycline hydrochloride degradation by activation of peroxymonosulfate with lanthanum copper Ruddlesden-Popper perovskite oxide: performance and mechanism. Chemosphere. 2023;332:138906. https://doi.org/10.1016/j.chemosphere.2023.138906.

    Article  CAS  PubMed  Google Scholar 

  5. Pang Y, Chen Z, Yang D, Fan X, Liang Z, Xu Y, Ye S, Liu J, Zhou L. Immobilized CeO2@C-N heterogenous structures with enhanced dual modal photodynamic/photothermal bacterial inactivation under NIR laser irradiation. J. Anal. Test. 2023;7(3):189. https://doi.org/10.1007/s41664-023-00258-y.

    Article  Google Scholar 

  6. Hosseinikhah M, Mokhtarani N. Landfill leachate post-treatment by the photoelectro-peroxone process using a baffled reactor. Sep Purif Technol. 2023;306:122549. https://doi.org/10.1016/j.seppur.2022.122549.

    Article  CAS  Google Scholar 

  7. Wang L, Song XY, Tong HJ, Huo YN. Preparation of flower-like Bi/CuS photocatalyst by photo-reduction method. Chin J Rare Met. 2023;47(1):177. https://doi.org/10.13373/j.cnki.cjrm.XY22060030.

    Article  Google Scholar 

  8. Sun SQ, Wang JQ, Zhu YC. Conductivity of metal W-doped AgSnO2 materials. Chin J Rare Met. 2022;46(8):1111. https://doi.org/10.13373/j.cnki.cjrm.XY21100033.

    Article  Google Scholar 

  9. Shi H, He Y, Li YB, Luo PY. 2D MOF derived cobalt and nitrogen-doped ultrathin oxygen-rich carbon nanosheets for efficient Fenton-like catalysis: tuning effect of oxygen functional groups in close vicinity to Co–N sites. J Hazard Mater. 2023;443:130345. https://doi.org/10.1016/j.jhazmat.2022.130345.

    Article  CAS  PubMed  Google Scholar 

  10. Qian JH, Mi XJ, Chen ZH, Xu W, Liu W, Ma R, Zhang YC, Du YF, Ni BJ. Efficient emerging contaminants (EM) decomposition via peroxymonosulfate (PMS) activation by Co3O4/carbonized polyaniline (CPANI) composite: characterization of tetracycline (TC) degradation property and application for the remediation of EM-polluted water body. J Clean Prod. 2023;405:137023. https://doi.org/10.1016/j.jclepro.2023.137023.

    Article  CAS  Google Scholar 

  11. Guo T, Jiang LS, Wang K, Li Y, Huang HX, Wu XY, Zhang GK. Efficient persulfate activation by hematite nanocrystals for degradation of organic pollutants under visible light irradiation: facet-dependent catalytic performance and degradation mechanism. Appl Catal B Environ. 2021;286:119883. https://doi.org/10.1016/j.apcatb.2021.119883.

    Article  CAS  Google Scholar 

  12. Chen LQ, Liao JJ, Zhang LL, Li C, He SH, Ge CJ. Rapid laser-induced highly dispersed and ultrafine n-doped graphene-wrapped FeCo2O4 nanoparticles for nearly 100% utilization and conversion of peroxymonosulfate into singlet oxygen. ACS ES&T Water. 2023;3(2):542. https://doi.org/10.1021/acsestwater.2c00563.

    Article  CAS  Google Scholar 

  13. Zhou Y, Zhai YB, Zhang C, QinY D, Wang WJ, Liu XM, Liu XP, Wang ZX, Huang C, Luo HZ, Liu ML, Zhang X, Huang ML, Hou CL. Biochar-derived flower-like Co–Mo2C spheres/g-C3N4 photocatalyst: engineering morphology configuration and electronic structure tuning. Sep Purif Technol. 2023;316:123808. https://doi.org/10.1016/j.seppur.2023.123808.

    Article  CAS  Google Scholar 

  14. Zhang XN, Wu DX, Liu XJ, Qiu Y, Liu ZL, Xie HJ, Duan JZ, Hou BR. Efficient electrocatalytic chlorine evolution under neutral seawater conditions enabled by highly dispersed Co3O4 catalysts on porous carbon. Appl Catal B Environ. 2023;330:122594. https://doi.org/10.1016/j.apcatb.2023.122594.

    Article  CAS  Google Scholar 

  15. Yang F, Lu YT, Dong XX, Liu MT, Li Z, Wang XY, Li LL, Zhu CZ, Zhang WX, Yu C, Yuan AH. Interfacial engineering coupling with tailored oxygen vacancies in Co2Mn2O4 spinel hollow nanofiber for catalytic phenol removal. J Hazard Mater. 2022;424:127647. https://doi.org/10.1016/j.jhazmat.2021.127647.

    Article  CAS  PubMed  Google Scholar 

  16. Xu JJ, Gu HY, Chen MD, Li XP, Zhao HW, Yang HB. Dual Z-scheme Bi3TaO7/Bi2S3/SnS2 photocatalyst with high performance for Cr(VI) reduction and TC degradation under visible light irradiation. Rare Met. 2022;41(7):2417. https://doi.org/10.1007/s12598-022-01988-1.

    Article  CAS  Google Scholar 

  17. Wang ZH, Yang LJ, Shan ZZ, Tang L, Chen C, Lan YQ, Li W. Fabrication of magnetic cobalt-iron composite moored on carbon derived from cigarette butts (CoFe@CCB) for peroxymonosulfate activation to efficiently degrade Rhodamine B. J Water Process Eng. 2023;53:103845. https://doi.org/10.1016/j.jwpe.2023.103845.

    Article  Google Scholar 

  18. Liu H, He ZL, Li JH, Zhao S. Well-dispersed cobalt nanoparticles encapsulated on ZIF-8-derived N-doped porous carbon as an excellent peroxymonosulfate activator for sulfamethoxazole degradation. Chem Eng J. 2023;451:138597. https://doi.org/10.1016/j.cej.2022.138597.

    Article  CAS  Google Scholar 

  19. Shen SQ, Wang GS, Yan FF, Yuan T. Research progress in MOF derived transition metal single atomic catalysts for oxygen reduction reaction. Chin J Rare Met. 2023;47(1):28. https://doi.org/10.13373/j.cnki.cjrm.XY22080014.

    Article  Google Scholar 

  20. Liu SY, Cheng JX, Guo A, Fan GY. Architecture and active motif engineering of N–CoS2@C yolk–shell nanoreactor for boosted tetracycline removal via peroxymonosulfate activation: performance, mechanism and destruction pathways. Environ Pollut. 2023;330:121761. https://doi.org/10.1016/j.envpol.2023.121761.

    Article  CAS  PubMed  Google Scholar 

  21. Tian W, Zhang H, Qian Z, Ouyang T, Sun H, Qin J, Tadé MO, Wang S. Bread-making synthesis of hierarchically Co@C nanoarchitecture in heteroatom doped porous carbons for oxidative degradation of emerging contaminants. Appl Catal B Environ. 2018;225:76. https://doi.org/10.1016/j.apcatb.2017.11.056.

    Article  CAS  Google Scholar 

  22. Ma YB, Wang YW, Zhang DF, Jia XX, Wang Y, Zhou SX, Wågberg T, Hu GZ. One-pot synthesis of Pd-Au-alloy-nanoparticle-decorated graphene oxide functionalized with dodecahydrododecaborate cluster for rapid and complete reduction of 4-nitrophenol at room temperature. Rare Met. 2023;42(11):3622. https://doi.org/10.1007/s12598-023-02453-3.

    Article  CAS  Google Scholar 

  23. Wang T, Liang QW, Xing YJ, Sun MQ, Luo HJ. Magnetic Fe/N-codoped carbon derived from modified Fe-base MOFs: synergism of multiple active sites for peroxymonosulfate activation. J Environ Chem Eng. 2023;11(3):109905. https://doi.org/10.1016/j.jece.2023.109905.

    Article  CAS  Google Scholar 

  24. Ma Y, Fang HX, Chen R, Chen Q, Liu SJ, Zhang K, Li HJ. 2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution. Rare Met. 2023;42(12):3993. https://doi.org/10.1007/s12598-023-02387-w.

    Article  CAS  Google Scholar 

  25. Srinivas K, Liu DW, Ma F, Chen AR, Zhang ZH, Wu Y, Wu Q, Chen YF. Defect-engineered mesoporous undoped carbon nanoribbons for benchmark oxygen reduction reaction. Small. 2023;19:2301589. https://doi.org/10.1002/smll.202301589.

    Article  CAS  Google Scholar 

  26. Lin ZF, Chen P, Lv WY, Fang Z, Xiao ZJ, Luo J, Zhang JL, Liu Y, Liu GG. Non-radical dominated degradation of chloroquine phosphate via Fe-based O-doped polymeric carbon nitride activated peroxymonosulfate: performance and mechanism. Sep Purif Technol. 2023;319:124049. https://doi.org/10.1016/j.seppur.2023.124049.

    Article  CAS  Google Scholar 

  27. Lai XJ, Liang XB, Zhao XH, Li Y, Xu WC. Nitrogen and sulfur co-doped porous carbon derived from polypyrrole-polythiophene for efficient peroxydisulfate activation towards degradation of aniline. Environ Res. 2023;229:115993. https://doi.org/10.1016/j.envres.2023.115993.

    Article  CAS  PubMed  Google Scholar 

  28. Wang LD, Wang YN, Wang ZX, Du PH, Xing L, Xu WC, Ni JC, Liu S, Wang YH, Yu GF, Dai Q. Proton transfer triggered in-situ construction of C=N active site to activate PMS for efficient autocatalytic degradation of low-carbon fatty amine. Water Res. 2023;240:120119. https://doi.org/10.1016/j.watres.2023.120119.

    Article  CAS  PubMed  Google Scholar 

  29. Liu XY, Wang LJ, Dou JF, Qian F, Qing ZL, Xie XL, Song YH. Nitrogen-doped carbon materials prepared using different organic precursors as catalysts of peroxymonosulfate to degrade sulfamethoxazole: first-time performance leading to the incorrect selection of the best catalyst. Chemosphere. 2023;326:138442. https://doi.org/10.1016/j.chemosphere.2023.138442.

    Article  CAS  PubMed  Google Scholar 

  30. Luo J, Chen Y, Zhang X, Ma R, Huang HM, Sun SC, Lin JH, Yan F, Xu JY. Microwave-induced preparation of MgO-loaded N-rich porous biochar from marine biomass for efficient CO2 capture and mechanism exploration via theoretical calculation. J Clean Prod. 2023;405:136915. https://doi.org/10.1016/j.jclepro.2023.136915.

    Article  CAS  Google Scholar 

  31. Yu T, Zhu YW, Xu XJ, Shen ZX, Chen P, Lim CT, Thong JTL, Sow CH. Controlled growth and field-emission properties of cobalt oxide nanowalls. Adv Mater. 2005;17(13):1595. https://doi.org/10.1002/adma.200500322.

    Article  CAS  Google Scholar 

  32. Zhang WS, Zhou WL, Li YF, Ren J, Wang ZD. Enhanced ammonia decomposition activity over unsupported Co3O4: unravelling the promotion effect of alkali metal. Appl Catal B Environ. 2023;330:122644. https://doi.org/10.1016/j.apcatb.2023.122644.

    Article  CAS  Google Scholar 

  33. Liu YJ, Tang H, Jian PM, Liu B. Oxygen-vacancy defect engineering to boost the aerobic oxidation of limonene over Co3O4 nanocubes. Appl Catal B Environ. 2023;334:122828. https://doi.org/10.1016/j.apcatb.2023.122828.

    Article  CAS  Google Scholar 

  34. Zhang BL, Deng LF, Liu B, Luo CY, Liebau M, Zhang SG, Gläser R. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met. 2022;41(1):166. https://doi.org/10.1007/s12598-021-01790-5.

    Article  CAS  Google Scholar 

  35. Song ZY, Wang G, Chen Y, Lu Y, Wen ZY. In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries. Chem Eng J. 2023;463:142289. https://doi.org/10.1016/j.cej.2023.142289.

    Article  CAS  Google Scholar 

  36. Li J, Xiao C, Wang K, Li Y, Zhang GK. Enhanced generation of reactive oxygen species under visible light irradiation by adjusting the exposed facet of FeWO4 nanosheets to activate oxalic acid for organic pollutant removal and Cr(VI) reduction. Environ Sci Technol. 2019;53(18):11023. https://doi.org/10.1021/acs.est.9b00641.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu YG, Shang CQ, Wang ZY, Zhang JQ, Yang MY, Cheng H, Lu ZG. Co and N co-modified carbon nanotubes asefficient electrocatalyst for oxygen reduction reaction. Rare Met. 2021;40(1):90. https://doi.org/10.1007/s12598-019-01270-x.

    Article  CAS  Google Scholar 

  38. Moghaddam MS, Bahari A, Litkohi HR. Using the synergistic effects of MoS2/rGO and bimetallic hybrids as a high-performance nanoelectrocatalyst for oxygen reduction reaction. Int J Hydrogen Energy. 2023;48(85):33139. https://doi.org/10.1016/j.ijhydene.2023.05.070.

    Article  CAS  Google Scholar 

  39. Zhang XX, Gu WY, Liu D, Zhou L, Huy NN, Wang LZ, Zhang JL, Liu YD, Lei JY. Fe(II) and Pyridinic N complex sites synergy to activate PMS for specific generation of 1O2 to degrade antibiotics with high efficiency. Sci Total Environ. 2023;892:164067. https://doi.org/10.1016/j.scitotenv.2023.164067.

    Article  CAS  PubMed  Google Scholar 

  40. Liu MT, Zhu HY, Du RR, Zhang WX, Shi WL, Guo ZJ, Tang S, Ang EH, Yang J, Pan JM, Yang F. Constructing functional thermal-insulation-layer on Co3O4 nanosphere for reinforced local-microenvironment photothermal PMS activation in pollutant degradation. J Environ Chem Eng. 2023;11(3):109939. https://doi.org/10.1016/j.jece.2023.109939.

    Article  CAS  Google Scholar 

  41. Cai MJ, Cheng PC, Li JJ, Wu F, Sarakha M, Mailhot G, Brigante M. Toward a better understanding of peroxymonosulfate and peroxydisulfate activation using a nano zero-valent iron catalyst supported on graphitized carbon: mechanisms and application to the degradation of estrogenic compounds in different water matrix. J Clean Prod. 2023;414:137702. https://doi.org/10.1016/j.jclepro.2023.137702.

    Article  CAS  Google Scholar 

  42. Xu Z, Luo GF, Fan Y, Xia YX, Li JP, Zhang JS, Shih KM, Tang YY. Continuous degradation of plasticizer bisphenol A by catalytic Cu(FexAl2−x)O4@sediment ceramic membranes combined with peroxymonosulfate activation. Chem Eng J. 2023;469:143867. https://doi.org/10.1016/j.cej.2023.143867.

    Article  CAS  Google Scholar 

  43. Yang ZY, Yang XF, An GY, Wang DS. Regulating spin state of Fe active sites by the P-doping strategy for enhancing peroxymonosulfate activation. Appl Catal B Environ. 2023;330:122618. https://doi.org/10.1016/j.apcatb.2023.122618.

    Article  CAS  Google Scholar 

  44. Tian ZH, Chen QR, Ren SY, Zhang HY, Tian WJ, Sun HQ, Wang SB. Mo and N co-doped iron biochar materials activating peroxymonosulfate for enhanced degradation of bisphenol a: mechanism discussion and practical application. Chem Eng J. 2023;466:143298. https://doi.org/10.1016/j.cej.2023.143298.

    Article  CAS  Google Scholar 

  45. Tian ZH, Chen QR, Ren SY, Zhang HY, Tian WJ, Sun HQ, Wang SB. Effects of cobalt salts on biomass conversion to functional carbon-based catalysts for peroxymonosulfate activation. Chem Eng J. 2023;469:143856. https://doi.org/10.1016/j.cej.2023.143856.

    Article  CAS  Google Scholar 

  46. Chen XY, Duan CY, Zhou Y, Yang LY, Zhou YB. Peroxymonosulfate activation by β-cyclodextrin modified amorphous manganese oxides for a high-efficiency bisphenol a degradation. J Clean Prod. 2023;395:136323. https://doi.org/10.1016/j.jclepro.2023.136323.

    Article  CAS  Google Scholar 

  47. Nasir Khan MA, Klu PK, Xiao CM, Zhang M, Zhang WX, Sheikh ZS, Yang Y, Zhou YZ, Zhu ZG, Qi JW, Li JS. Hollow Fe0/graphitized carbon nanocubes derived from the metal-organic framework for enhanced activation of peroxymonosulfate. Sep Purif Technol. 2023;320:124101. https://doi.org/10.1016/j.seppur.2023.124101.

    Article  CAS  Google Scholar 

  48. Bezza FA, Iwarere SA, Tichapondwa SM. Fabrication and application of Ag, black TiO2 and nitrogen-doped 3D reduced graphene oxide (3D black TiO2/Ag/N@rGO) evaporator for efficient steam generation. Catalysts. 2023;13(3):514. https://doi.org/10.3390/catal13030514.

    Article  CAS  Google Scholar 

  49. Du RR, Zhu HY, Zhao HY, Lu H, Dong C, Liu MT, Yang F, Yang J, Wang J, Pan JM. Modulating photothermal properties by integration of fined Fe–Co in confined carbon layer of SiO2 nanosphere for pollutant degradation and solar water evaporation. Environ Res. 2023;222:115365. https://doi.org/10.1016/j.envres.2023.115365.

    Article  CAS  PubMed  Google Scholar 

  50. Li GQ, Yue QH, Fu P, Wang K, Zhou Y, Wang J. Ionic dye based covalent organic frameworks for photothermal water evaporation. Adv Fuct Mater. 2023;33(34):2213810. https://doi.org/10.1002/adfm.202213810.

    Article  CAS  Google Scholar 

  51. Cui LF, Wang PF, Che HN, Gao X, Chen J, Liu B, Ao YH. Co nanoparticles modified N-doped carbon nanosheets array as a novel bifunctional photothermal membrane for simultaneous solar-driven interfacial water evaporation and persulfate mediating water purification. Appl Catal B Environ. 2023;330:122556. https://doi.org/10.1016/j.apcatb.2023.122556.

    Article  CAS  Google Scholar 

  52. Wang YC, Wang CZ, Song XJ, Megarajan SK, Jiang HQ. A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. J Mater Chem A. 2018;6(3):963. https://doi.org/10.1039/C7TA08972D.

    Article  CAS  Google Scholar 

  53. Xie MY, Qian JQ, Li Y, Yang HM, Qu JG, Hu XL, Mao QH. Construction of an integrated multi-layer textile for solar-driven steam generation. Appl Opt. 2021;60(16):4930. https://doi.org/10.1364/ao.422841.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China National Natural Science Foundation (No. 201808085), the National Key Research and Development Program of China (No. 2022YFB3504100), Jiangsu Provincial Founds for Young Scholars (No. BK20190961), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 22KJB610012), and the International Cooperation Foundation for the Chunhui Plan Program of Ministry of Education of China (No. HZKY20220136). We are appreciative of the support of characterizations from Instrumental Analysis Center, Jiangsu University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu Yang or Cheng-Zhang Zhu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 96 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, WL., Wang, G., Zhang, Y. et al. Coupling N-doping and confined Co3O4 on carbon nanotubes by polydopamine coating strategy for pleiotropic water purification. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02661-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02661-5

Keywords

Navigation