Skip to main content
Log in

Rare earth element-modified MOF materials: synthesis and photocatalytic applications in environmental remediation

  • MINI REVIEW
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal–organic framework-like materials (MOFs) have been developed in the fields of photocatalysis for their excellent optical properties and physicochemical properties, including environmental remediation, CO2 photoreduction, water splitting, and so on. With their important roles in various fields, rare earth elements have received growing interests from scientists. Modifying MOFs with rare earth elements for modification allows broadening the absorption spectrum, while the active electrons on their empty 4f orbitals can act as traps to capture photoexcited carriers to inhibit the recombination of electron–hole pairs, thus promoting photocatalytic activity. Therefore, rare earth elements modified MOFs provide an attractive way to achieve their high value utilization. In this mini-review, the synthesis of rare earth element-modified MOFs photocatalysts and corresponding applications in the removal of antibiotics, CO2 reduction, and hydrogen production are constructively summarized and discussed. Finally, the latest advancements and current difficulties of these materials as well as the application prospects are also provided.

Graphical Abstract

摘要

金属有机框架材料(MOFs)因其优异的光学性能和物理化学特性,在光催化领域得到了发展,包括环境修复、光还原CO2、光解水等。稀土元素在各个领域发挥着重要作用,因此受到越来越多科学家的关注。用稀土元素对 MOFs 进行改性,可以拓宽其吸收光谱,同时其空 4f 轨道上的活性电子可以作为捕获光激发载流子的陷阱,抑制电子-空穴对的重组,从而促进光催化活性。因此,稀土元素修饰的 MOFs 为实现其高价值利用提供了一种极具吸引力的方法。在这篇综述中,对稀土元素修饰的 MOFs 光催化剂的合成及其在去除抗生素、还原 CO2和光解水制氢方面的应用进行了建设性的总结和讨论。最后,介绍了这些材料的最新进展、目前存在的困难以及应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [36]. Copyright 2023, Elsevier

Fig. 3

Reproduced with permission from Ref. [40]. Copyright 2022, Elsevier

Fig. 4

Reproduced with permission from Ref. [51]. Copyright 2022, Elsevier

Fig. 5

Reproduced with permission from Ref. [74]. Copyright 2022, Elsevier

Fig. 6

Reproduced with permission from Ref. [76]. Copyright 2021, Elsevier

Fig. 7

Reproduced with permission from Ref. [79]. Copyright 2021, American Chemical Society

Fig. 8

Reproduced with permission from Ref. [80]. Copyright 2022, Elsevier

Similar content being viewed by others

References

  1. Wu HF, Chao YH, Xia GH, Luo J, Tao DJ, Zhu LH, Luo GL, Huang Y, Hua MQ, Zhu WS. Enhanced adsorption performance for antibiotics by alcohol-solvent mediated boron nitride nanosheets. Rare Met. 2022;41(1):342. https://doi.org/10.1007/s12598-021-01855-5.

    Article  CAS  Google Scholar 

  2. Lopez LR, Dessi P, Cabrera-Codony A, Rocha-Melogno L, Kraakman B, Naddeo V, Balaguer MD, Puig S. CO2 in indoor environments: from environmental and health risk to potential renewable carbon source. Sci Total Environ. 2023;856:159088. https://doi.org/10.1016/j.scitotenv.2022.159088.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Falini G, Basile ML, Gandolfi S, Carella F, Guarini G, Degli Esposti L, Iafisco M, Adamiano A. Natural calcium phosphates from circular economy as adsorbent phases for the remediation of textile industry waste-waters. Ceram Int. 2023;49(1):243. https://doi.org/10.1016/j.ceramint.2022.08.337.

    Article  CAS  Google Scholar 

  4. Li Z, Xie CJ, Ren XW, Zhang Q, Ma BJ. CuS nanoenzyme against bacterial infection by in situ hydroxyl radical generation on bacteria surface. Rare Met. 2023;42(6):1899. https://doi.org/10.1007/s12598-022-02223-7.

    Article  CAS  Google Scholar 

  5. Tong S, Wang SW, Zhao Y, Feng CP, Xu BC, Zhu M. Enhanced alure-type biological system (E-ATBS) for carbon, nitrogen and phosphorus removal from slaughterhouse wastewater: a case study. Biores Technol. 2019;274:244. https://doi.org/10.1016/j.biortech.2018.11.094.

    Article  CAS  Google Scholar 

  6. Sun LJ, Su HW, Liu QQ, Hu J, Wang LL, Tang H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022;41(7):2387. https://doi.org/10.1007/s12598-022-01966-7.

    Article  CAS  Google Scholar 

  7. Chen GZ, Chen KJ, Fu JW, Liu M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Met. 2020;39(6):607. https://doi.org/10.1007/s12598-020-01416-2.

    Article  CAS  Google Scholar 

  8. Dong W, Zhou SA, Ma Y, Chi DJ, Chen R, Long HM, Chun TJ, Liu SJ, Qian FP, Zhang K. N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare Met. 2023;42(4):1195. https://doi.org/10.1007/s12598-022-02196-7.

    Article  CAS  Google Scholar 

  9. Xu C, Zhou Q, Huang WY, Yang K, Zhang YC, Liang TX, Liu ZQ. Constructing Z-scheme beta-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis. Rare Met. 2022;41(6):2094. https://doi.org/10.1007/s12598-021-01897-9.

    Article  CAS  Google Scholar 

  10. Yang SJ, Xu YL, Gong WP, Huang YK, Wang GH, Yang Y, Feng CQ. Photocatalytic degradation of organic dyes with H3PW12O40/TiO2-SiO2. Rare Met. 2016;35(10):797. https://doi.org/10.1007/s12598-015-0521-6.

    Article  CAS  Google Scholar 

  11. Hoang T, Mondal S, Allen MB, Garcia L, Krause JA, Oliver AG, Prior TJ, Hubin TJ. Synthesis and characterization of late transition metal complexes of mono-acetate pendant armed ethylene cross-bridged tetraazamacrocycles with promise as oxidation catalysts for dye bleaching. Molecules. 2023;28(1):232. https://doi.org/10.3390/molecules28010232.

    Article  CAS  Google Scholar 

  12. Wang J, Zhao D, Shen Y, Li F, Zhang M. Preparation of silver vanadate photocatalyst by co-precipitation method and effect of pH on its photocatalytic activity. Chin J Rare Met. 2022;46(7):906. https://doi.org/10.13373/j.cnki.cjrm.XY20050022.

    Google Scholar 

  13. Shen H, Jiang LJ, Li P, Yuan HP, Li ZN, Zhang JX. Heat treatment effect on structural evolution and hydrogen sorption properties of Y0.5La0.2Mg0.3-xNi2 compound. Rare Met. 2023;42(6):1813. https://doi.org/10.1007/s12598-022-02232-6.

    Article  CAS  Google Scholar 

  14. Yan Y, Wang F, Xia W, Zheng S, Xiong L, Xiao Z. First principles study of photoelectric properties of anatase TiO2 with intrinsic defects. Chin J Rare Met. 2022;46(2):195. https://doi.org/10.13373/j.cnki.cjrm.XY20070018.

    Google Scholar 

  15. Zhou XC, Chen SQ, Zhou MJ, Li M, Lan S, Feng T. Highly efficient cobalt-based amorphous catalyst for peroxymonosulfate activation toward wastewater remediation. Rare Met. 2023;42(4):1160. https://doi.org/10.1007/s12598-022-02220-w.

    Article  CAS  Google Scholar 

  16. Hu JZ, Liu WJ, Zheng JH, Li GC, Bu YF, Qiao F, Lian JB, Zhao Y. Coral-like cobalt selenide/carbon nanosheet arrays attached on carbon nanofibers for high-rate sodium-ion storage. Rare Met. 2023;42(3):916. https://doi.org/10.1007/s12598-022-02146-3.

    Article  CAS  Google Scholar 

  17. Li XY, Li ZA, Yan FB, Zhang H, Wang JO, Ke XY, Jiang Y, Chen NF, Chen JK. Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates. Rare Met. 2022;41(10):3495. https://doi.org/10.1007/s12598-022-02033-x.

    Article  CAS  Google Scholar 

  18. Wang Y, Huang W. Chemistry of non-traditional oxidation states of rare earth metals. Scientia Sinica Chimica. 2020;50(11):1504. https://doi.org/10.1360/SSC-2020-0154.

    Article  Google Scholar 

  19. Tang Y, Li L, Wang C, Yang L, Yang P. Research progress of rare earth complex-inorganic hybrid luminescent materials. Mater Rev. 2022;36(19):21050037. https://doi.org/10.1189/cldb.21050037.

    Article  Google Scholar 

  20. Vallejo KD, Kabir F, Poudel N, Marianetti CA, Hurley DH, Simmonds PJ, Dennett CA, Gofryk K. Advances in actinide thin films: synthesis, properties, and future directions. Rep Prog Phys. 2022;85(12): 123101. https://doi.org/10.1088/1361-6633/ac968e.

    Article  ADS  Google Scholar 

  21. Li RS, Zhou XH, Xie Z, Kong LY, Wang DW, Wang Y. Temperature-dependent electronic properties for 4f states in cerium mononitride. Int J Quantum Chem. 2022;122(11): e26896. https://doi.org/10.1002/qua.26896.

    Article  CAS  Google Scholar 

  22. Chen XH, Wei Q, Hong JD, Xu R, Zhou TH. Bifunctional metal-organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019;38(5):413. https://doi.org/10.1007/s12598-019-01259-6.

    Article  CAS  Google Scholar 

  23. Feng YJ, Wang Y, Wang KW, Ma JP, Duan YY, Liu J, Lu X, Zhang B, Wang GY, Zhou XY. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 2022;41(2):385. https://doi.org/10.1007/s12598-021-01815-z.

    Article  CAS  Google Scholar 

  24. Singh LK, Joseph P, Srinivasan A, Pillai UTS, Pai BC. Microstructure and mechanical properties of gadolinium- and misch metal-added Mg-Al alloy. Rare Met. 2022;41(9):3205. https://doi.org/10.1007/s12598-017-0928-3.

    Article  CAS  Google Scholar 

  25. Tan G, Guo YQ, Zuo LY, Zhang K, Zhang YM, Zhang LL, Yu JJ, Feng X, Li B, Wang LY. Synthesis of zinc-based metal-organic framework as highly efficient photocatalyst for decomposition of organic dyes in aqueous solution. Rare Met. 2023;42(4):1205. https://doi.org/10.1007/s12598-022-02184-x.

    Article  CAS  Google Scholar 

  26. Zhao JG, Zhou HY, Hu ZA, Wu YW, Jia H, Liu XM. Sn-MOFs/G composite materials for long cycling performance lithium ion batteries. Rare Met. 2022;41(5):1504. https://doi.org/10.1007/s12598-021-01886-y.

    Article  CAS  Google Scholar 

  27. Han C, Li YH, Li JY, Qi MY, Tang ZR, Xu YJ. Cooperative syngas production and C-N bond formation in one photoredox cycle. Angewandte Chemie-Int Edition. 2021;60(14):7962. https://doi.org/10.1002/anie.202015756.

    Article  CAS  Google Scholar 

  28. Yuan L, Qi MY, Tang ZR, Xu YJ. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angewandte Chemie-Int Edition. 2021;60(39):21150. https://doi.org/10.1002/ange.202101667.

    Article  CAS  Google Scholar 

  29. Qi MY, Conte M, Anpo M, Tang ZR, Xu YJ. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem Rev. 2021;121(21):13051. https://doi.org/10.1021/acs.chemrev.1c00197.

    Article  CAS  PubMed  Google Scholar 

  30. Li JY, Yuan L, Li SH, Tang ZR, Xu YJ. One-dimensional copper-based heterostructures toward photo-driven reduction of CO2 to sustainable fuels and feedstocks. J Mater Chem A. 2019;7(15):8676. https://doi.org/10.1039/C8TA12427B.

    Article  CAS  Google Scholar 

  31. Shang FK, Li YH, Tang ZR, Xu YJ. Photocatalytic materials for sustainable chemistry via cooperative photoredox catalysis. Catal Today. 2023;410:85. https://doi.org/10.1016/j.cattod.2022.04.007.

    Article  CAS  Google Scholar 

  32. Zhang Y, Qi MY, Tang ZR, Xu YJ. Photoredox-catalyzed plastic waste conversion: nonselective degradation versus selective synthesis. ACS Catal. 2023;13(6):3575. https://doi.org/10.1021/acscatal.3c00301.

    Article  CAS  Google Scholar 

  33. Zhang F, Li YH, Qi MY, Yamada YMA, Anpo M, Tang ZR, Xu YJ. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021;1(2):272. https://doi.org/10.1016/j.checat.2021.01.003.

    Article  CAS  Google Scholar 

  34. Wu HL, Qi MY, Tang ZR, Xu YJ. Semiconductor quantum dots: a versatile platform for photoredox organic transformation. J Mater Chem A. 2023;11(7):3262. https://doi.org/10.1039/D2TA09423A.

    Article  CAS  Google Scholar 

  35. Zhu CZ, Yao HQ, Sun TY, Le SK, Jin QJ, Chen CX, Xu HT, Wang SB. Ultrathin fluorine-doped TiO2(B) nanosheets-anchored hierarchical cog wheel-shaped NH2-MIL-53(Al) for boosting photocatalytic activity. Chem Eng J. 2023;460: 141849. https://doi.org/10.1016/j.cej.2023.141849.

    Article  CAS  Google Scholar 

  36. Kong C, Jiang G, Sheng Y, Liu YH, Gao F, Liu F, Duan XG. Progress on Cu-based metal-organic frameworks for high-efficiency electrochemical CO2 conversion. Chem Eng J. 2023;460: 141803. https://doi.org/10.1016/j.cej.2023.141803.

    Article  CAS  Google Scholar 

  37. Fang SY, Gong JL, Tang L, Cao WC, Li J, Tan ZK, Niu QY, Chen ZP. Construction the hierarchical architecture of molybdenum disulfide/MOF composite membrane via electrostatic self-assembly strategy for efficient molecular separation. Chem Eng J. 2022;449: 137808. https://doi.org/10.1016/j.cej.2022.137808.

    Article  CAS  Google Scholar 

  38. Zhu CZ, He QY, Yao HQ, Le SK, Chen WX, Chen CX, Wang SB, Duan XG. Amino-functionalized NH2-MIL-125(Ti)-decorated hierarchical flowerlike Znln2S4 for boosted visible-light photocatalytic degradation. Environ Res. 2022;204:112368. https://doi.org/10.1016/j.envres.2021.112368.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng FP, Wang L, Wang HQ, Lei CJ, Yang B, Li ZJ, Zhang QH, Lei LC, Wang SB, Hou Y. Boosting alkaline hydrogen evolution and Zn-H2O cell induced by interfacial electron transfer. Nano Energy. 2020;71:104621. https://doi.org/10.1016/j.nanoen.2020.104621.

    Article  CAS  Google Scholar 

  40. Wang AW, Ni JX, Wang W, Wang XY, Liu DM, Zhu Q. MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX: mechanism, pathways and DFT calculation. J Hazard Mater. 2022;426:128106. https://doi.org/10.1016/j.jhazmat.2021.128106.

    Article  CAS  PubMed  Google Scholar 

  41. Huang YL, Qin J, Liu XX, Wei DL, Seo HJ. Hydrothermal synthesis of flower-like Na-doped alpha-Bi2O3 and improved photocatalytic activity via the induced oxygen vacancies. J Taiwan Inst Chem Eng. 2019;96:353. https://doi.org/10.1016/j.jtice.2018.11.029.

    Article  CAS  Google Scholar 

  42. Zhao YJ, Wang QZ, Wang HH, Hui ZS, Sun XY, Bu T, Liu YN, Wang WZ, Xu ZH, Wang L. Europium-based metal-organic framework containing characteristic metal chains: a novel turn-on fluorescence sensor for simultaneous high-performance detection and removal of tetracycline. Sens Actuators B-Chem. 2021;334:129610. https://doi.org/10.1016/j.snb.2021.129610.

    Article  CAS  Google Scholar 

  43. Li T, Zhang LJ, Li XH, Wang XP, Jin ZL. Design and synthesis of phosphating bimetallic CeCo-MOF for substantially improved photocatalytic hydrogen evolution. J Mater Chem C. 2022;10(22):8750. https://doi.org/10.1039/D2TC00922F.

    Article  CAS  Google Scholar 

  44. Liao JM, Xue ZH, Sun H, Xue FJ, Zhao ZX, Wang XX, Dong W, Yang DX, Nie M. MoS2 supported on Er-MOF as efficient electrocatalysts for hydrogen evolution reaction. J Alloy Compd. 2022;898:162991. https://doi.org/10.1016/j.jallcom.2021.162991.

    Article  CAS  Google Scholar 

  45. Hang MT, Cheng Y, Wang YT, Li H, Zheng MQ, He MY, Chen Q, Zhang ZH. Rational synthesis of isomorphic rare earth metal-organic framework materials for simultaneous adsorption and photocatalytic degradation of organic dyes in water. CrystEngComm. 2022;24(3):552. https://doi.org/10.1039/D1CE01411K.

    Article  CAS  ADS  Google Scholar 

  46. Mohammadnejad M, Hajiashrafi T, Rashnavadi R. An erbium-organic framework as an adsorbent for the fast and selective adsorption of methylene blue from aqueous solutions. J Porous Mater. 2018;25(3):761. https://doi.org/10.1007/s10934-017-0489-8.

    Article  CAS  Google Scholar 

  47. Nagajyothi PC, Ramaraghavulu R, Pavani K, Shim J. Catalytic reduction of methylene blue and rhodamine B using Ce-MOF-derived CeO2 catalyst. Mater Lett. 2023;336:133837. https://doi.org/10.1016/j.matlet.2023.133837.

    Article  CAS  Google Scholar 

  48. Liu JJ, Fu JJ, Liu T, Cheng FX. Europium-cadmium organic framework with zwitterionic ligand exhibiting tunable luminescence, CO2 adsorption and dye degradation. J Solid State Chem. 2022;313:123346. https://doi.org/10.1016/j.jssc.2022.123346.

    Article  CAS  Google Scholar 

  49. Wang Z, Sun GT, Chen JB, Xie Y, Jiang H, Sun LN. Upconversion luminescent humidity sensors based on lanthanide-doped MOFs. Chemosensors. 2022;10(2):66. https://doi.org/10.3390/chemosensors10020066.

    Article  CAS  Google Scholar 

  50. Wei FH, Zheng T, Ren QH, Chen HL, Peng JH, Ma YF, Liu ZJ, Liang Z, Chen D. Preparation of metal-organic frameworks by microwave-assisted ball milling for the removal of CR from wastewater. Green Process Synth. 2022;11(1):595. https://doi.org/10.1515/gps-2022-0060.

    Article  CAS  Google Scholar 

  51. Cai W, Yu X, Cao Y, Hu CY, Wang Y, Zhao YX, Bu YF. Electron-coupled enhanced interfacial interaction of Ce-MOF/Bi2MoO6 heterostructure for boosted photoreduction CO2. J Environ Chem Eng. 2022;10(3):107461. https://doi.org/10.1016/j.jece.2022.107461.

    Article  CAS  Google Scholar 

  52. Yang GH, Zhang DQ, Zhu G, Zhou TR, Song MT, Qu LL, Xiong KC, Li HT. A Sm-MOF/GO nanocomposite membrane for efficient organic dye removal from wastewater. RSC Adv. 2020;10(14):8540. https://doi.org/10.1039/D0RA01110J.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Packialakshmi JS, Albeshr MF, Alrefaei AF, Zhang FC, Liu XH, Selvankumar T, Mythili R. Development of ZnO/SnO2/rGO hybrid nanocomposites for effective photocatalytic degradation of toxic dye pollutants from aquatic ecosystems. Environ Res. 2023;225:115602. https://doi.org/10.1016/j.envres.2023.115602.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao YY, Wang XB, Xu QK, Chakir S, Xu YF, Xu B, Hu YH. Micro-/nanostructured ZnFe2O4 hollow sphere/GO composite for structurally enhanced photocatalysis performance. Rare Met. 2023;42(3):813. https://doi.org/10.1007/s12598-022-02200-0.

    Article  CAS  Google Scholar 

  55. Gunathilaka M, Bao SY, Liu XX, Li Y, Pan Y. Antibiotic pollution of planktonic ecosystems: a review focused on community analysis and the causal chain linking individual- and community-level responses. Environ Sci Technol. 2023;57(3):1199. https://doi.org/10.1021/acs.est.2c06787.

    Article  CAS  ADS  Google Scholar 

  56. Bao QB, Liu C, Friese K, Dadi T, Yu JH, Fan CX, Shen QS. Understanding the heavy metal pollution pattern in sediments of a typical small- and medium-sized reservoir in China. Int J Environ Res Public Health. 2023;20(1):708. https://doi.org/10.3390/ijerph20010708.

    Article  CAS  Google Scholar 

  57. Zhang Y, Yasutake D, Hidaka K, Okayasu T, Kitano M, Hirota T. Crop-localised CO2 enrichment improves the microclimate, photosynthetic distribution and energy utilisation efficiency in a greenhouse. J Clean Prod. 2022;371:133465. https://doi.org/10.1016/j.jclepro.2022.133465.

    Article  CAS  Google Scholar 

  58. Echeverria RS, Jimenez ALA, Barrera MDT, Alvarez PS, Hernandez EG, Vega E, Palomera MJ, Retama A, Gay DA. Nitrogen and sulfur compounds in ambient air and in wet atmospheric deposition at Mexico city metropolitan area. Atmos Environ. 2023;292:119411. https://doi.org/10.1016/j.atmosenv.2022.119411.

    Article  CAS  Google Scholar 

  59. Jiang H, Moosavi SM, Czaban-Jozwiak J, Torre B, Shkurenko A, Ameur ZO, Jia JT, Alsadun N, Shekhah O, Di Fabrizio E, Smit B, Eddaoudi M. Reticular chemistry for the rational design of mechanically robust mesoporous merged-net metal-organic frameworks. Matter. 2023;6(1):285. https://doi.org/10.1016/j.matt.2022.10.004.

    Article  CAS  Google Scholar 

  60. Guo WX, Wang SF, Hao HG, Ma XX, Zhao X, Kong XJ, Yan H, Zhang L, Liu RH, Li X, Li X, Zhu HJ, Li YW, Yin J, Zhou HW, Zhong DC, Dai FN. Series of dual functional two-dimensional RE-OFs for nitrophenol reduction and dye separation. Inorg Chem. 2023;62(14):5757. https://doi.org/10.1021/acs.inorgchem.3c00361.

    Article  CAS  PubMed  Google Scholar 

  61. Ji CS, Fan RQ, Zhang J, Sun TC, Zhu K, Jiang X, Jia WW, Yang YL. A robust turn-on luminescent MOF probe with redox center and rare RE4 cluster for highly sensitive detection of captopril. Sens Actuators B-Chem. 2022;357:131399. https://doi.org/10.1016/j.snb.2022.131399.

    Article  CAS  Google Scholar 

  62. Li SK, Chai HR, Zhang L, Xu YC, Jiao Y, Chen JR. Constructing oxygen vacancy-rich MXene@Ce-MOF composites for enhanced energy storage and conversion. J Colloid Interface Sci. 2023;642:235. https://doi.org/10.1016/j.jcis.2023.03.120.

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Gosch J, Grape ES, Atzori C, Steinke F, Lomachenko KA, Inge AK, Stock N. Solubility and stability of hexanuclear Ce(IV)-O clusters. Chem Mater. 2023;35(15):5876. https://doi.org/10.1021/acs.chemmater.3c00636.

    Article  CAS  Google Scholar 

  64. Guo XY, Ni N, Shi ML, Zhang XH, Yuan QB, Wang N, Zhang SH, Luo Y. The persistent, bioaccumulative, toxic, and resistance (PBTR) risk assessment framework of antibiotics in the drinking water sources. J Environ Manage. 2023;326:116776. https://doi.org/10.1016/j.jenvman.2022.116776.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Cheng DM, Xie J, Zhang YT, Wan Y, Zhang YQ, Shi XJ. Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: a meta-analysis study. Chemosphere. 2022;300:134529. https://doi.org/10.1016/j.chemosphere.2022.134529.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao SY, Long YK, Su YP, Wang SB, Zhang ZT, Zhang XJ. Cobalt-enhanced mass transfer and catalytic production of sulfate radicals in MOF-derived CeO2 center dot Co3O4 nanoflowers for efficient degradation of antibiotics. Small. 2021;17(43):2101393. https://doi.org/10.1002/smll.202101393.

    Article  CAS  Google Scholar 

  67. Zhao SY, Li S, Long YK, Shen XH, Zhao ZC, Wei QL, Wang SB, Zhang Z, Zhang XJ, Zhang ZT. Ce-based heterogeneous catalysts by partial thermal decomposition of Ce-MOFs in activation of peroxymonosulfate for the removal of organic pollutants under visible light. Chemosphere. 2021;280:130637. https://doi.org/10.1016/j.chemosphere.2021.130637.

    Article  CAS  PubMed  Google Scholar 

  68. Cai Z, Yang XL. Research on restoration of heavy metal contaminated farmland based on restoration ecological compensation mechanism. Sustainability. 2023;15(6):5210. https://doi.org/10.3390/su15065210.

    Article  Google Scholar 

  69. Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: evidence and mechanisms. Adv Pharmacol. 2023;96:151. https://doi.org/10.1016/bs.apha.2022.08.001.

    Article  CAS  PubMed  Google Scholar 

  70. Wang RY, Sang PT, Guo YH, Jin P, Cheng YL, Yu H, Xie YF, Yao WR, Qian H. Cadmium in food: source, distribution and removal. Food Chem. 2023;405:134666. https://doi.org/10.1016/j.foodchem.2022.134666.

    Article  CAS  PubMed  Google Scholar 

  71. Xu K, Gao BQ, Liu TF, Li JY, Xiang YX, Fu YC, Zhao MY. Association of blood mercury levels with bone mineral density in adolescents aged 12–19. Environ Sci Pollut Res. 2023;30:46933. https://doi.org/10.1007/s11356-023-25701-6.

    Article  CAS  Google Scholar 

  72. Wu N, Guo H, Xue R, Wang MY, Cao YJ, Wang XQ, Xu MN, Yang W. A free nitrogen-containing Sm-MOF for selective detection and facile removal of mercury(II). Colloids Surf a-Physicochem Eng Aspects. 2021;618:126484. https://doi.org/10.1016/j.colsurfa.2021.126484.

    Article  CAS  Google Scholar 

  73. Bjorklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-life lead exposure: risks and neurotoxic consequences. Current Med Chem. 2023. https://doi.org/10.2174/0929867330666230409135310.

    Article  Google Scholar 

  74. Govarthanan M, Jeon CH, Kim W. Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions. Environ Pollut. 2022;303:119049. https://doi.org/10.1016/j.envpol.2022.119049.

    Article  CAS  PubMed  Google Scholar 

  75. Tang R, Ullah N, Hui YJ, Li X, Li ZH. Enhanced CO2 methanation activity over Ni/CeO2 catalyst by one-pot method. Mol Catal. 2021;508:111602. https://doi.org/10.1016/j.mcat.2021.111602.

    Article  CAS  Google Scholar 

  76. Karmakar S, Barman S, Rahimi FA, Biswas S, Nath S, Maji TK. Developing post-modified Ce-MOF as a photocatalyst: a detail mechanistic insight into CO2 reduction toward selective C2 product formation. Energy Environ Sci. 2023;16(5):2187. https://doi.org/10.1039/D2EE03755F.

    Article  CAS  Google Scholar 

  77. Sowik J, Grzyb T, Trykowski G, Klimczuk T, Nikiforow K, Cavdar O, Zaleska-Medynska A, Malankowska A. Lanthanide-organic-frameworks modified ZnIn2S4 for boosting hydrogen generation under UV-Vis and visible light. Int J Hydrog Energy. 2022;47(36):16065. https://doi.org/10.1016/j.ijhydene.2022.03.111.

    Article  CAS  Google Scholar 

  78. Gong YN, Mei JH, Liu JW, Huang HH, Zhang JH, Li XK, Zhong DC, Lu TB. Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis. Appl Catal B-Environ. 2021;292:120156. https://doi.org/10.1016/j.apcatb.2021.120156.

    Article  CAS  Google Scholar 

  79. Kinik FP, Ortega-Guerrero A, Ebrahim FM, Ireland CP, Kadioglu O, Mace A, Asgari M, Smit B. Toward optimal photocatalytic hydrogen generation from water using pyrene-based metal-organic frameworks. ACS Appl Mater Interfaces. 2021;13(48):57118. https://doi.org/10.1021/acsami.1c16464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang H, Jia L, Zhang ZP, Xu B, Liu ZL, Zhang QT, Cao Y, Nan ZD, Zhang M, Ohno T. Novel cerium-based MOFs photocatalyst for photocarrier collaborative performance under visible light. J Catal. 2022;405:74. https://doi.org/10.1016/j.jcat.2021.11.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2021YFB3500600, 2021YFB3500605 and 2022YFB3504100), the Key R&D Program of Jiangsu Province (No. BE2022142), the National Natural Science Foundation of China (No. 22208170), the Natural Science Foundation of Inner Mongolia (No. 2021BS02016), Jiangsu International Cooperation Project (No. BZ2021018), the Nanjing Science and Technology Top Experts Gathering Plan, Natural Science Foundation of Jiangsu Province (No. BK20220365), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Open Foundation of State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control (No. SEMPC2023004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Zhang Zhu or Hai-Tao Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, SK., Jin, QJ., Han, JA. et al. Rare earth element-modified MOF materials: synthesis and photocatalytic applications in environmental remediation. Rare Met. 43, 1390–1406 (2024). https://doi.org/10.1007/s12598-023-02584-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02584-7

Keywords

Navigation