Skip to main content
Log in

Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The rare-earth nickelates (RENiO3) exhibit an exceptional complex electronic phase diagram and multiple electronic phase transitions that enrich promising applications in correlated electronic devices beyond conventional semiconductors. Nevertheless, the practical applications of RENiO3 are challenged by their intrinsic thermodynamic metastability in material synthesis and high material cost. Therefore, developing an economical strategy to achieve the batch synthesis of RENiO3 is of vital importance. In this work, we enlarged the synthesis amount of RENiO3 up to 20 g per batch using chloride (KCl) assisted molten salt reaction. By optimizing the reaction conditions, the powder of RENiO3 with the cubic shape and average size of ~ 2 μm was effectively synthesized, while their phase purity exceeded 95%. In addition, the cost to synthesize RENiO3 was further reduced by using rare-earth extraction intermediate products as the raw materials, instead of using the pure rare-earth precursors. It also achieved wide adjustments in the metal-to-insulator-transition temperature from 160 to 420 K without significantly reducing the transition sharpness. By enlarging the synthesis amount and the reducing the cost, it paves the way to the device application of RENiO3.

Graphical abstract

摘要

稀土镍基氧化物 (RENiO3) 表现出异常复杂的电子相图和多重电子相变, 这些超越传统半导体的性能提高了其在相关电子器件应用中的可能性。然而, 材料自身固有的热力学亚稳态和高昂的材料成本给RENiO3的器件应用增加了难度, 因此, 开发一种经济的策略来实现RENiO3的批量合成至关重要。在这项工作中, 我们使用氯化物 (KCl) 作为助熔剂, 通过优化反应条件, 有效地合成了晶粒为立方形状、平均粒径约2 μm的稀土镍基氧化物粉末, 其相纯度超过95%。此外, 以稀土富集物取代高纯单一稀土氧化物作为原料, 可以进一步降低材料合成的成本。我们在RENiO3中实现了金属-绝缘体转变 (MIT) 温度从160到420 K的大范围调整, 其转变尖锐度没有显著降低。通过有效地提高其合成量并降低其成本, 本工作有助于进一步推动RENiO3在相关电子器件制造中的应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torrance JB, Lacorre P, Nazzal AI, Ansaldo EJ, Niedermayer C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys Rev B. 1992;45(14):8209.

    Article  CAS  Google Scholar 

  2. Chen J, Li Z, Dong H, Xu J, Wang V, Feng Z, Chen Z, Chen B, Chen N, Mao HK. Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation. Adv Funct Mater. 2020;30(23):2000987.

    Article  CAS  Google Scholar 

  3. Catalan G. Progress in perovskite nickelate research. Phase Transit. 2008;81(7–8):729.

    Article  CAS  Google Scholar 

  4. Zhang Z, Schwanz D, Narayanan B, Kotiuga M, Dura JA, Cherukara M, Zhou H, Freeland JW, Li J, Sutarto R, He F, Wu C, Zhu J, Sun Y, Ramadoss K, Nonnenmann SS, Yu N, Comin R, Rabe KM, Sankaranarayanan SKRS, Ramanathan S. Perovskite nickelates as electric-field sensors in salt water. Nature. 2017;553(7686):68.

    Article  Google Scholar 

  5. Chen J, Hu H, Wang J, Yajima T, Ge B, Ke X, Dong H, Jiang Y, Chen N. Overcoming synthetic metastabilities and revealing metal-to-insulator transition and thermistor bi-functionalities for d-band correlation perovskite nickelates. Mater Horiz. 2019;6(4):788.

    Article  CAS  Google Scholar 

  6. Harisankar S, Chandra M, Das S, Soni K, Prajapat M, Mavani KR. Anomalous Hall effect and re-entrant metallic transitions in epitaxial PrNiO3-δ thin films. J Appl Phys. 2019;125(2):025102.

    Article  Google Scholar 

  7. Dargusch M, Liu WD, Chen ZG. Thermoelectric generators: alternative power supply for wearable electrocardiographic systems. Adv Sci (Weinh). 2020;7(18):2001362.

    Article  CAS  Google Scholar 

  8. Zhu XC, Lin Q, Ma ZF, Huo CS, Fen DS, Zheng AS. Research progress of high purity germanium crystals. Chin J Rare Met. 2020;44(8):876.

    Google Scholar 

  9. Ha SD, Jaramillo R, Silevitch DM, Schoofs F, Kerman K, Baniecki JD, Ramanathan S. Hall effect measurements on epitaxial SmNiO3 thin films and implications for antiferromagnetism. Phys Rev B. 2013;87(12):125150.

    Article  Google Scholar 

  10. Alonso JA, MartÍnez-Lope MJ, Rasines I. Preparation, crystal structure, and metal-to-insulator transition of EuNiO3. J Solid State Chem. 1995;120(1):170.

    Article  CAS  Google Scholar 

  11. Alonso JA, Muñoz A, Largeteau A, Demazeau G. Crystal growth of NdNiO3 perovskite under high oxygen pressure. J Phys: Condens Matter. 2004;16(14):S1277.

    CAS  Google Scholar 

  12. Nikulin IV, Novojilov MA, Kaul AR, Mudretsova SN, Kondrashov SV. Oxygen nonstoichiometry of NdNiO3-δ and SmNiO3-δ. Mater Res Bull. 2004;39(6):775.

    Article  CAS  Google Scholar 

  13. Wang L, Hao Y-Q, Ma W, Liang S. Improving phase transition temperature of VO2 via Ge doping: a combined experimental and theoretical study. Rare Met. 2021;40(5):1337.

    Article  CAS  Google Scholar 

  14. Sun Y, Kotiuga M, Lim D, Narayanan B, Cherukara M, Zhang Z, Dong Y, Kou R, Sun CJ, Lu Q, Waluyo I, Hunt A, Tanaka H, Hattori AN, Gamage S, Abate Y, Pol VG, Zhou H, Sankaranarayanan S, Yildiz B, Rabe KM, Ramanathan S. Strongly correlated perovskite lithium ion shuttles. Proc Natl Acad Sci U S A. 2018;115(39):9672.

    Article  CAS  Google Scholar 

  15. Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S. A correlated nickelate synaptic transistor. Nat Commun. 2013;4(1):2676.

    Article  Google Scholar 

  16. Zhang H-T, Zuo F, Li F, Chan H, Wu Q, Zhang Z, Narayanan B, Ramadoss K, Chakraborty I, Saha G, Kamath G, Roy K, Zhou H, Chubykin AA, Sankaranarayanan SKRS, Choi JH, Ramanathan S. Perovskite nickelates as bio-electronic interfaces. Nat Commun. 2019;10(1):1651.

    Article  CAS  Google Scholar 

  17. Alonso JA, Martínez-Lope MJ, Casais MT, Martínez JL, Demazeau G, Largeteau A, García-Muñoz JL, Muñoz A, Fernández-Díaz MT. High-pressure preparation, crystal structure, magnetic properties, and phase transitions in GdNiO3 and DyNiO3 perovskites. Chem Mater. 1999;11(9):2463.

    Article  CAS  Google Scholar 

  18. Lacorre P, Torrance JB, Pannetier J, Nazzal AI, Wang PW, Huang TC. Synthesis, crystal structure, and properties of metallic PrNiO3: comparison with metallic NdNiO3 and semiconducting SmNiO3. J Solid State Chem. 1991;91(2):225.

    Article  CAS  Google Scholar 

  19. Serrano-Sanchez F, Fauth F, Martinez JL, Alonso JA. Experimental observation of monoclinic distortion in the insulating regime of SmNiO3 by synchrotron X-ray diffraction. Inorg Chem. 2019;58(17):11828.

    Article  CAS  Google Scholar 

  20. Jaramillo R, Schoofs F, Ha SD, Ramanathan S. High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates. J Mater Chem C. 2013;1(13):2455.

    Article  CAS  Google Scholar 

  21. Cheng J, Navrotsky A, Zhou X-D, Anderson HU. Enthalpies of formation of LaMO3 perovskites (M = Cr, Fe Co, and Ni). J Mater Res. 2011;20(1):191.

    Article  Google Scholar 

  22. Escote MT, da Silva AML, Matos JR, Jardim RF. General properties of polycrystalline LnNiO3 (Ln=Pr, Nd, Sm) compounds prepared through different precursors. J Solid State Chem. 2000;151(2):298.

    Article  CAS  Google Scholar 

  23. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A. 1976;32(5):751.

    Article  Google Scholar 

  24. Patel RK, Ojha SK, Kumar S, Saha A, Mandal P, Freeland JW, Middey S. Epitaxial stabilization of ultra thin films of high entropy perovskite. Appl Phys Lett. 2020;116(7): 071601.

    Article  CAS  Google Scholar 

  25. Escote MT, Barbeta VB, Jardim RF, Campo J. Metal-insulator transition in Nd1-xEuxNiO3 compounds. J Phys Condens Matter. 2006;18(26):6117.

    Article  CAS  Google Scholar 

  26. Nikulin IV, Novojilov MA, Kaul AR, Maiorova AF, Mudretsova SN. Synthesis and transport properties study of Nd1−xSmxNiO3−δ solid solutions. Mater Res Bull. 2004;39(6):803.

    Article  CAS  Google Scholar 

  27. Napierala C, Edely M, Laffez P, Sauques L. Thermo-optical effect of Nd0.3Sm0.7NiO3 ceramic in the infrared range. Opt Mater. 2009;31(10):1498.

    Article  CAS  Google Scholar 

  28. Frand G, Bohnke O, Lacorre P, Fourquet JL, Carré A, Eid B, Théobald JG, Gire A. Tuning of metal/insulator transition around room temperature of perovskites Sm1-xNdxNiO3. J Solid State Chem. 1995;120(1):157.

    Article  CAS  Google Scholar 

  29. Chen J, Li H, Wang J, Ke X, Ge B, Chen J, Dong H, Jiang Y, Chen N. Frequency switchable correlated transports in perovskite rare-earth nickelates. J Mater Chem A. 2020;8(27):13630.

    Article  CAS  Google Scholar 

  30. Chen J, Hu H, Wang J, Liu C, Liu X, Li Z, Chen N. A d-band electron correlated thermoelectric thermistor established in metastable perovskite family of rare-earth nickelates. ACS Appl Mater Interfaces. 2019;11(37):34128.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2021YFA0718900), the National Natural Science Foundation of China (Nos. 52073090 and 62074014), the Fundamental Research Funds for the Central Universities (No. FRF-TP-19-023A3Z), and Beijing New-star Plan of Science and Technology (No. Z191100001119071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuo-Fu Chen or Ji-Kun Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Li, ZA., Yan, FB. et al. Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates. Rare Met. 41, 3495–3503 (2022). https://doi.org/10.1007/s12598-022-02033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02033-x

Keywords

Navigation