Skip to main content

Advertisement

Log in

Phosphorus/nitrogen co-doped hollow carbon fibers enabling high-rate potassium storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Potassium-ion hybrid capacitors (PIHCs) reconcile the advantages of batteries and supercapacitors, exhibiting both good energy density and high-power density. However, the low-rate performance and poor cycle stability of battery-type anodes hinder their practical application. Herein, phosphorus/nitrogen co-doped hollow carbon fibers (P-HCNFs) are prepared by a facile template method. The stable grape-like structure with continuous and interconnected cavity structure is an ideal scaffold for shortening the ion transport and relieving volume expansion, while the introduction of P atoms and intrinsic N atoms can create abundant extrinsic/intrinsic defects and additional active sites, reducing the K+ diffusion barrier and improving the capacitive-controlled capacity. The P-HCNFs delivers a high specific capacity of 310 mAh·g−1 at 0.1 A·g−1 with remarkable ultra-high-rate performance (140 mAh·g−1 at 50 A·g−1) and retains an impressive capacity retention of 87% after 10,000 cycles at 10 A·g−1. As expected, the as-assembled PIHCs present a high energy density (115.8 Wh·kg−1 at 378.0 W·kg−1) and excellent capacity retention of 91% after 20,000 cycles. This work not only shows great potential for utilizing heteroatom-doping and structural design strategies to boost potassium storage, but also paves the way for advancing the practicality of high-energy PIHCs devices.

Graphical abstract

摘要

钾离子混合电容器 (PIHCs) 综合了二次离子电池和超级电容器的优点, 表现出良好的能量密度和功率密度。然而,电池型负极的低倍率性能和较差的循环稳定性阻碍了其实际应用。在此,通过简单的模板方法制备了磷/氮共掺空心碳纤维 (P-HCNFs)。 稳定的葡萄状结构具有连续和相互连接的空腔结构,有利于缩短离子传输距离和缓解体积膨胀,而P原子和内在N原子的引入可以创造丰富的外在/内在缺陷和额外的活性位点, 减少K+扩散障碍,提高电容贡献比容量。 P-HCNFs在0.1 A·g−1时提供了310 mAh·g−1的高比容量, 具有显著的超高倍率性能 (50 A·g−1时为140 mAh·g−1), 并且在10 A·g−1时循环10000次后保持了87%的惊人容量。另外, 组装的PIHCs呈现出高能量密度 (在378.0 W·kg−1时为115.8 Wh·kg−1), 并在20000次循环后保持91%的出色容量。 这项工作不仅显示了利用杂原子掺杂和结构设计策略来提高储钾的巨大潜力, 而且还为推进高性能PIHCs器件的实用化铺平了道路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li X, Sun X, Hu X, Fan F, Cai S, Zheng C, Stucky GD. Review on comprehending and enhancing the initial coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy. 2020;77:105143. https://doi.org/10.1016/j.nanoen.2020.105143.

    Article  CAS  Google Scholar 

  2. Pan Q, Tong Z, Su Y, Qin S, Tang Y. Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv Funct Mater. 2021;31(37):2103912. https://doi.org/10.1002/adfm.202103912.

    Article  CAS  Google Scholar 

  3. Yuan J, Hu X, Liu Y, Zhong G, Yu B, Wen Z. Recent progress in sodium/potassium hybrid capacitors. Chem Commun. 2020;56(90):13933. https://doi.org/10.1039/d0cc05476c.

    Article  CAS  Google Scholar 

  4. Yu A, Pan Q, Zhang M, Xie D, Tang Y. Fast rate and long life potassium-ion based dual-ion battery through 3D porous organic negative electrode. Adv Funct Mater. 2020;30(24):2001440. https://doi.org/10.1002/adfm.202001440.

    Article  CAS  Google Scholar 

  5. Wang L, Zhang X, Li C, Sun XZ, Wang K, Su FY, Liu FY, Ma YW. Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Met. 2022;41(9):2971. https://doi.org/10.1007/s12598-022-02028-8.

    Article  CAS  Google Scholar 

  6. Liu S, Kang L, Henzie J, Zhang J, Ha J, Amin MA, Hossain MSA, Jun SC, Yamauchi Y. Recent advances and perspectives of battery-type anode materials for potassium ion storage. ACS Nano. 2021;15(12):18931. https://doi.org/10.1021/acsnano.1c08428.

    Article  CAS  Google Scholar 

  7. Yi S, Wang L, Zhang X, Li C, Liu WJ, Wang K, Sun XZ, Xu YN, Yang ZX, Cao Y, Sun J, Ma YW. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull. 2021;66(9):914. https://doi.org/10.1016/j.scib.2020.12.026.

    Article  CAS  Google Scholar 

  8. Wang GY, Wang XH, Sun JF, Zhang YM, Hou LR, Yuan CZ. Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors. Rare Met. 2022;41(11):3706. https://doi.org/10.1007/s12598-022-02067-1.

    Article  CAS  Google Scholar 

  9. Qiu D, Guan J, Li M, Kang C, Wei J, Li Y, Xie Z, Wang F, Yang R. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv Funct Mater. 2019;29(32):1903496. https://doi.org/10.1002/adfm.201903496.

    Article  CAS  Google Scholar 

  10. Yang J, Zhai Y, Zhang X, Zhang E, Wang H, Liu X, Xu F, Kaskel S. Perspective on carbon anode materials for K+ storage: balancing the intercalation-controlled and surface-driven behavior. Adv Energy Mater. 2021;11(29):2100856. https://doi.org/10.1002/aenm.202100856.

    Article  CAS  Google Scholar 

  11. Guo YM, Zhang LJ, XiLi D, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Met. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

    Article  Google Scholar 

  12. Tao S, Xu W, Zheng J, Kong F, Cui P, Wu D, Qian B, Chen S, Song L. Soybean roots-derived N, P co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. Carbon. 2021;178:233. https://doi.org/10.1016/j.carbon.2021.03.022.

    Article  CAS  Google Scholar 

  13. Xu S, Cai L, Niu P, Li ZQ, Wei LZ, Yao G, Wang CL, Zheng FC, Chen QW. The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon. 2021;178:256. https://doi.org/10.1016/j.carbon.2021.03.039.

    Article  CAS  Google Scholar 

  14. Jiang X, Tian S, Jiang Q, Xu C, Gao P, Zhou T, Zhou J. A V2O5-based freestanding anode with high rate and superior cycle life for potassium storage. Compos Commun. 2022;32:101172. https://doi.org/10.1016/j.coco.2022.101172.

    Article  Google Scholar 

  15. Geng S, Zhou T, Jia M, Shen X, Gao P, Tian S, Zhou P, Liu B, Zhou J, Zhuo S, Li F. Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ Sci. 2021;14(5):3184. https://doi.org/10.1039/d1ee00193k.

    Article  CAS  Google Scholar 

  16. Wang X, Ma J, Wang J, Li X. N-doped hollow carbon nanofibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries. J Alloys Compd. 2020;821:153268. https://doi.org/10.1016/j.jallcom.2019.153268.

    Article  CAS  Google Scholar 

  17. Zhang X, Wang L, Li BQ, Li J, Xiong W. Effects of substituting Ni with Cu on microstructure and electrochemical performance of A2B7-type La-Y-Ni-based hydrogen storage alloy. Chin J Rare Met. 2021;45(12):1438. https://doi.org/10.13373/j.cnki.cjrm.

    Article  Google Scholar 

  18. Zhang HF, Xuan JY, Zhang Q, Sun ML, Jia FC, Wang XM, Yin GC, Lu SY. Strategies and challenges for enhancing performance of MXene-based gas sensors: a review. Rare Met. 2022;41(12):3976. https://doi.org/10.1007/s12598-022-02087-x.

    Article  CAS  Google Scholar 

  19. Zhong G, Lei S, Hu X, Ji Y, Liu Y, Yuan J, Li J, Zhan H, Wen Z. Facile synthesis of P-doped carbon nanosheets as janus electrodes of advanced potassium-ion hybrid capacitor. ACS Appl Mater Interfaces. 2021;13(25):29511. https://doi.org/10.1021/acsami.1c04278.

    Article  CAS  Google Scholar 

  20. Hu X, Zhong G, Li J, Liu Y, Yuan J, Chen J, Zhan H, Wen Z. Hierarchical porous carbon nanofibers for compatible anode and cathode of potassium-ion hybrid capacitor. Energy Environ Sci. 2020;13(8):2431. https://doi.org/10.1039/d0ee00477d.

    Article  Google Scholar 

  21. He H, Huang D, Tang Y, Wang Q, Ji X, Wang H, Guo Z. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy. 2019;57:728. https://doi.org/10.1016/j.nanoen.2019.01.009.

    Article  CAS  Google Scholar 

  22. Chen J, Cheng Y, Zhang Q, Luo C, Li HY, Wu Y, Zhang H, Wang X, Liu H, He X, Han J, Peng DL, Liu M, Wang MS. Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-Like carbon anodes. Adv Funct Mater. 2020;31(1):2007158. https://doi.org/10.1002/adfm.202007158.

    Article  CAS  Google Scholar 

  23. Liang MF, Liu Yu, Zhang J, Wang FY, Miao ZC, Diao LC, Mu JL, Zhou J, Zhuo SP. Understanding the role of metal and N species in M@NC catalysts for electrochemical CO2 reduction reaction. Appl Catal B. 2022;306:121115. https://doi.org/10.1016/j.apcatb.2022.121115.

    Article  CAS  Google Scholar 

  24. Xu W, Xin B, Yang X. Carbonization of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hybrid membranes and its mechanism. Cellulose. 2020;27(7):3789. https://doi.org/10.1007/s10570-020-03006-y.

    Article  CAS  Google Scholar 

  25. Cao B, Liu H, Zhang P, Sun N, Zheng B, Li Y, Du HL, Xu B. Flexible mxene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes. Adv Funct Mater. 2021;31(32):2102126. https://doi.org/10.1002/adfm.202102126.

    Article  CAS  Google Scholar 

  26. Jia M, Tian S, Yin G, Gao P, Niu Z, Wang X, Jia F, Zhou T, Liu B. Hollow MoS2 spheres confined in carbon fibers for ultralong-life potassium storage. ACS Appl Energy Mater. 2022;5(3):3605. https://doi.org/10.1021/acsaem.1c04101.

    Article  CAS  Google Scholar 

  27. Dai J, Zhao CK, Yang N, Wang H, Liu L, Yang JP, Wang QF, Zhang W, Hu H. Fast potassium storage in Ba0.5Ti2(PO4)3/C nanospheres for high-performance potassium-ion hybrid capacitors. J Power Sour. 2022;518:230771. https://doi.org/10.1016/j.jpowsour.2021.230771.

    Article  CAS  Google Scholar 

  28. Ruan JF, Zhao YH, Luo SN, Hu JM, Pang YP, Fang F, Zheng SY. Killing two birds with one stone: constructing tri-elements doped and hollow-structured carbon sphere by a single template for advanced potassium-ion hybrid capacitors. J Energy Chem. 2022;65:556. https://doi.org/10.1016/j.jechem.2021.06.038.

    Article  CAS  Google Scholar 

  29. Tian S, Jiang Q, Cai T, Wang Y, Wang D, Kong D, Ren H, Zhou J, Xing W. Graphitized electrospun carbon fibers with superior cyclability as a free-standing anode of potassium-ion batteries. J Power Sour. 2020;474:228479. https://doi.org/10.1016/j.jpowsour.2020.228479.

    Article  CAS  Google Scholar 

  30. Qiu C, Li M, Qiu D, Yue C, Xian L, Liu S, Wang F, Yang R. Ultra-high sulfur-doped hierarchical porous hollow carbon sphere anodes enabling unprecedented durable potassium-ion hybrid capacitors. ACS Appl Mater Interfaces. 2021;13(42):49942. https://doi.org/10.1021/acsami.1c14314.

    Article  CAS  Google Scholar 

  31. Chen C, Huang Y, Meng Z, Lu M, Xu Z, Liu P, Li T. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage. J Mater Sci Technol. 2021;76:11. https://doi.org/10.1016/j.jmst.2020.11.014.

    Article  CAS  Google Scholar 

  32. Liu H, Du HL, Zhao W, Qiang XJ, Zheng B, Li Y, Cao B. Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Storage Mater. 2021;40:490. https://doi.org/10.1016/j.ensm.2021.05.037.

    Article  Google Scholar 

  33. Niu P, Wang PS, Xu Y, Li ZQ, Wei LZ, Yao G, Wang JZ, Zheng FC. Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage. Inorg Chem Front. 2021;8(16):3926. https://doi.org/10.1039/d1qi00664a.

    Article  CAS  Google Scholar 

  34. Sun W, Sun Q, Lu R, Wen MX, Liu C, Xu JL, Wu YX. Sodium hypophosphite-assist pyrolysis of coal pitch to synthesis P-doped carbon nanosheet anode for ultrafast and long-term cycling sodium-ion batteries. J Alloys Compd. 2021;889:161678. https://doi.org/10.1016/j.jallcom.2021.161678.

    Article  CAS  Google Scholar 

  35. Wang L, Wang J, Ng DHL, Li S, Zou B, Cui Y, Liu X, El-Khodary SA, Qiu J, Lian J. Operando mechanistic and dynamic studies of N/P co-doped hard carbon nanofibers for efficient sodium storage. Chem Commun. 2021;57(75):9610. https://doi.org/10.1039/d1cc03961j.

    Article  CAS  Google Scholar 

  36. Li X, Sun N, Tian X, Yang T, Song Y, Xu B, Liu Z. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries. Energy Fuels. 2020;34(2):2445. https://doi.org/10.1021/acs.energyfuels.9b03637.

    Article  CAS  Google Scholar 

  37. Wu F, Dong R, Bai Y, Li Y, Chen G, Wang Z, Wu C. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(25):21335. https://doi.org/10.1021/acsami.8b05618.

    Article  CAS  Google Scholar 

  38. Zhang TQ, Mao ZF, Shi XJ, Jun J, He BB, Wang R, Gong YS, Wang HW. Tissue-derived carbon microbelt paper: a high-initial-coulombic-efficiency and low-discharge-platform K+-storage anode for 4.5 V hybrid capacitors. Energy Environ Sci. 2022;15(1):158. https://doi.org/10.1039/D1EE03214C.

    Article  CAS  Google Scholar 

  39. Mao ZF, Wang R, He BB, Jin J, Gong YS, Wang HW. Cross-linked sodium alginate as a multifunctional binder to achieve high-rate and long-cycle stability for sodium-ion batteries. Small (Weinheim an der Bergstrasse, Germany). 2023; e2207224. https://doi.org/10.1002/smll.2022072244

  40. Lu HY, Zhang XH, Wan F, Liu DS, Fan CY, Xu HM, Wang G, Wu XL. Flexible P-doped carbon cloth: vacuum-sealed preparation and enhanced Na-storage properties as binder-free anode for sodium ion batteries. ACS Appl Mater Interfaces. 2017;9(14):12518. https://doi.org/10.1021/acsami.7b01986.

    Article  CAS  Google Scholar 

  41. Chen S, Feng Y, Wang J, Zhang E, Yu X, Lu B. Free-standing N-doped hollow carbon fibers as high-performance anode for potassium ion batteries. Sci China Mater. 2020;64(3):547. https://doi.org/10.1007/s40843-020-1465-8.

    Article  CAS  Google Scholar 

  42. Li J, Yu L, Li Y, Wang G, Zhao L, Peng B, Zeng S, Shi L, Zhang G. Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale. 2021;13(2):692. https://doi.org/10.1039/d0nr06888h.

    Article  CAS  Google Scholar 

  43. Xu Y, Zhang C, Zhou M, Fu Q, Zhao C, Wu M, Lei Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun. 2018;9(1):1720. https://doi.org/10.1038/s41467-018-04190-z.

    Article  CAS  Google Scholar 

  44. Liang H, Sun Z, Zhang M, Hu W, Shi J, Chen J, Tian W, Huang M, Wu J, Wang H. Constructing carbon nanobubbles with boron doping as advanced anode for realizing unprecedently ultrafast potassium ion storage. Energy Environ Mater. 2023. https://doi.org/10.1002/eem2.12559.

    Article  Google Scholar 

  45. Ma X, Xiao N, Xiao J, Song X, Guo H, Wang Y, Zhao S, Zhong Y, Qiu J. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon. 2021;179:33. https://doi.org/10.1016/j.carbon.2021.03.067.

    Article  CAS  Google Scholar 

  46. Wang Q, Wang Y, Zeng J, Xu C, Liu P, Meng Y, Zhang C, Wang Y, Gao L, Ding R, Liu J, Jiang X, Zhang Y, Tang J, Wang XB. Nitrogen and phosphorus co-doped carbon for improving capacity and rate performances of potassium ion batteries. FlatChem. 2022;34:100398. https://doi.org/10.1016/j.flatc.2022.100398.

    Article  CAS  Google Scholar 

  47. Jia M, Zhang W, Cai X, Zhan X, Hou L, Yuan C, Guo Z. Re-understanding the galvanostatic intermittent titration technique: pitfalls in evaluation of diffusion coefficients and rational suggestions. J Power Sour. 2022;543:231843. https://doi.org/10.1016/j.jpowsour.2022.231843.

    Article  CAS  Google Scholar 

  48. Yuan F, Sun H, Zhang D, Li Z, Wang J, Wang H, Wang Q, Wu Y, Wang B. Enhanced electron transfer and ion storage in phosphorus/nitrogen co-doped 3D interconnected carbon nanocage toward potassium-ion battery. J Colloid Interface Sci. 2022;611:513. https://doi.org/10.1016/j.jcis.2021.12.121.

    Article  CAS  Google Scholar 

  49. Liu M, Chang L, Wang J, Li J, Jiang J, Pang G, Wang H, Nie P, Zhao C, Xu T, Wang L. Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. J Power Sour. 2020;469:228415. https://doi.org/10.1016/j.jpowsour.2020.228415.

    Article  CAS  Google Scholar 

  50. Yu X, Shao M, Yang X, Li C, Li T, Li D, Wang R, Yin L. A high-performance potassium-ion capacitor based on a porous carbon cathode originated from the Aldol reaction product. Chin Chem Lett. 2020;31(9):2215. https://doi.org/10.1016/j.cclet.2019.11.012.

    Article  CAS  Google Scholar 

  51. Dong S, Li Z, Xing Z, Wu X, Ji X, Zhang X. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl Mater Interfaces. 2018;10(18):15542. https://doi.org/10.1021/acsami.7b15314.

    Article  CAS  Google Scholar 

  52. Yi Y, Sun Z, Li C, Tian Z, Lu C, Shao Y, Li J, Sun J, Liu Z. Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv Funct Mater. 2019;30(4):1903878. https://doi.org/10.1002/adfm.201903878.

    Article  CAS  Google Scholar 

  53. Pham HD, Mahale K, Hoang TML, Mundree SG, Gomez-Romero P, Dubal DP. Dual carbon potassium-ion capacitors: biomass-derived graphene-like carbon nanosheet cathodes. ACS Appl Mater Interfaces. 2020;12(43):48518. https://doi.org/10.1021/acsami.0c12379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Youth Innovation Team of Colleges and Universities in Shandong Province (No. 2022KJ223), the National Natural Science Foundation of China (Nos. 22078179 and 52007110), and the Natural Science Foundation of Shandong Province (Nos. ZR2022JQ10 and ZR2021MA026), and Taishan Scholar Foundation (No. tsqn201812063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Tian or Tong Zhou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3574 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Tian, S., Jia, MY. et al. Phosphorus/nitrogen co-doped hollow carbon fibers enabling high-rate potassium storage. Rare Met. 42, 2622–2632 (2023). https://doi.org/10.1007/s12598-023-02326-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02326-9

Keywords

Navigation