Skip to main content

Advertisement

Log in

Strategies and challenges for enhancing performance of MXene-based gas sensors: a review

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the advantages of metal conductivity, large specific surface area, and rich surface functional groups, two-dimensional (2D) MXenes have shown great potential in the field of gas sensing. However, gas sensors fabricated with pristine MXenes generally suffer from several problems such as low sensitivity, poor selectivity, significant base-resistance drift, and poor environment stability. Therefore, many efforts have been devoted to overcoming these problems. In this review, we review the progress on MXene-based gas sensors and summarize several efficient strategies (including structural design, surface modification, inorganic Schottky junction/heterojunction sensitization, polymer addition, and metal-ion intercalation) to promote the gas-sensing performance. In addition, the major challenges and future development directions of MXene-based gas sensors are also outlined in the present review.

Graphical abstract

摘要

作为一种新型二维材料,MXene具有金属导电性,高比表面积,丰富表官能团,已经在气体传感领域显示出了巨大的潜力。然而,用原始MXene制造的气体传感器通常存在灵敏度低、选择性差、基线电阻漂移严重以及环境稳定性差等问题。为了克服这些问题,研究人员已经做了大量努力。本文回顾了基于MXene的气体传感器的研究进展,并总结了几种有效的策略(包括结构设计、表面改性、无机肖特基结/异质结敏化、聚合物添加和金属离子插层)来提高其气敏性能。此外,本文还指明了MXene基气体传感器所面临的主要挑战和未来的发展方向。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [17]. Copyright 2021, Elsevier. b Elements of MAX phases; c timeline of development of performance of MXene-based gas sensors at room temperature

Fig. 2

Reproduced with permission from Ref. [29]. Copyright 2017, American Chemical Society. c Response of V2CTx sensor to different tested gases. Reproduced with permission from Ref. [50]. Copyright 2019, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [52]. Copyright 2021, Elsevier. e Schematic diagram of preparation of 3D Ti3C2Tx; f SEM image of 3D polyvinyl alcohol (PVA)/polyetherimide (PEI) framework; g SEM image of 3D Ti3C2Tx/PVA/PEI framework. Reproduced with permission from Ref. [53]. Copyright 2018, Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [62]. Copyright 2020, American Chemical Society. d Energy band diagrams of MXene/Pd before and after H2 exposure (W, work function; E0, vacuum energy level; EF, Fermi level). Reproduced with permission from Ref. [63]. Copyright 2020, Elsevier

Fig. 5

Reproduced with permission from Ref. [72]. Copyright 2020, Wiley–VCH. b HRTEM images of Ti3C2Tx/TiO2 nanocomposites. Reproduced with permission from Ref. [37]. Copyright 2021, Elsevier. c Stability of sensor responses of pristine MXene measured at room temperature (20 °C); d responses of MXene sensor element that was measured at different temperatures; e normalized sensor responses at different temperatures for the same MXene sensor element; f comparison of sensor responses at different temperatures for same MXene sensor element (G, conductance of device in presence of analyte molecules; Gair, conductance of device in dry air; ∆G = G − Gair). Reproduced with permission from Ref. [73]. Copyright 2020, American Chemical Society. g Influence of UV illumination on NH3-sensing properties of Ti3C2Tx/TiO2 sensor. Reproduced with permission from Ref. [40]. Copyright 2022, Elsevier

Fig. 6

Reproduced with permission from Ref. [38]. Copyright 2021, Elsevier. b Schematic diagram of gas-sensing mechanisms of CuO/Ti3C2Tx. Reproduced with permission from Ref. [42]. Copyright 2020, American Chemical Society. ce SEM images of pure Fe2(MoO4)3, pure Ti3C2Tx, and Fe2(MoO4)3/Ti3C2Tx and fh corresponding surface structures. Reproduced with permission from Ref. [84]. Copyright 2020, Elsevier

Fig. 7

Reproduced with permission from Ref. [94]. Copyright 2020, Wiley–VCH. b Influence of bending angle and bending time on response curves of PANI/Ti3C2Tx sensor; c X-ray photoelectron spectroscopy (XPS) N 1s spectrum of PANI and PANI/Ti3C2Tx; d schematic illustration of gas-sensing mechanism of PANI/Ti3C2Tx sensor. Reproduced with permission from Ref. [95]. Copyright 2020, Elsevier. e Humidity effects on gas-sensing behaviors of PANI and PANI/Nb2CTx sensors for 10 × 10–6 NH3; f influence of humidity level on response curves of PANI and PANI/Nb2CTx sensors. Reproduced with permission from Ref. [103]. Copyright 2021, Elsevier

Fig. 8

Reproduced with permission from Ref. [111]. Copyright 2019, American Chemical Society. b Real resistance changes of sensors based on alkalized V2CTx and V2CTx on exposure to 20 × 10–6 NO2. Reproduced with permission from Ref. [35]. Copyright 2021, Elsevier

Fig. 9

Reproduced with permission from Ref. [119]. Copyright 2020, American Chemical Society. c Variation of electrical conductivity of pure Ti3C2Tx and hybrid Ti3C2Tx/WSe2 sensors under 80% RH over 10 days; d gas-sensing properties of Ti3C2Tx and Ti3C2Tx/WSe2 sensors upon exposure to various volatile organic compounds (VOCs) at 40 × 10–6. Reproduced with permission from Ref. [32]. Copyright 2020, Springer Nature. e, f TEM images of SnS2 nanosheets; g TEM image of SnS2/MXene derived TiO2 (SMT) hybrid; h HRTEM image of SMT hybrid. Reproduced with permission from Ref. [125]. Copyright 2021, Royal Society of Chemistry

Fig. 10

Reproduced with permission from Ref. [126]. Copyright 2015, American Chemical Society. b Atomic-scale device simulation, demonstrating that current of Ti3C2O2 and Ti-deficient Ti3C2O2 drops after NH3 adsorption (upper right), and Ti-deficient Ti3C2O2 has a greater current change than Ti3C2O2 (low right) (DI, change of current). Reproduced with permission from Ref. [128]. Copyright 2022, American Chemical Society. c Adsorption energies of NO molecule on MXene Sc2CO2 under biaxial strain of 0%–5%. Reproduced with permission from Ref. [130]. Copyright 2019, Elsevier

Fig. 11

Similar content being viewed by others

References

  1. Chen X, Shen Y, Zhang W, Zhang J, Wei D, Lu R, Zhu L, Li H, Shen Y. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor. Appl Surf Sci. 2018;435:1096. https://doi.org/10.1016/j.apsusc.2017.11.222.

    Article  CAS  Google Scholar 

  2. Xuan J, Zhao G, Sun M, Jia F, Wang X, Zhou T, Yin G, Liu B. Low-temperature operating ZnO-based NO2 sensor: a review. RSC Adv. 2020;10(65):39786. https://doi.org/10.1039/d0ra07328h.

    Article  CAS  Google Scholar 

  3. Zhao G, Xuan J, Gong Q, Wang L, Ren J, Sun M, Jia F, Yin G, Liu B. In situ growing double-layer TiO2 nanorod arrays on new-type FTO electrodes for low-concentration NH3 detection at room temperature. ACS Appl Mater Interfaces. 2020;12(7):8573. https://doi.org/10.1021/acsami.9b20337.

    Article  CAS  Google Scholar 

  4. Xuan J, Zhao G, Gong Q, Wang L, Ren J, Sun M, Zhou T, Xing F, Yin G, Liu B. Fabrication of in-situ grown and Pt-decorated ZnO nanoclusters on new-type FTO electrode for room-temperature detection of low-concentration H2S. J Alloys Compd. 2021;860: 158499. https://doi.org/10.1016/j.jallcom.2020.158499.

    Article  CAS  Google Scholar 

  5. Jana S, Mondal A. Fabrication of SnO2/α-Fe2O3, SnO2/α-Fe2O3-PB heterostructure thin films: enhanced photodegradation and peroxide sensing. ACS Appl Mater Interfaces. 2014;6(18):15832. https://doi.org/10.1021/am5030879.

    Article  CAS  Google Scholar 

  6. Huang J, Zhu Y, Zhong H, Yang X, Li C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces. 2014;6(10):7055. https://doi.org/10.1021/am501799w.

    Article  CAS  Google Scholar 

  7. Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, Yang Z. Identification and pattern recognition analysis of Chinese liquors by doped nano ZnO gas sensor array. Sensors Actuators B Chem. 2005;110(2):370. https://doi.org/10.1016/j.snb.2005.02.017.

    Article  CAS  Google Scholar 

  8. Vetter S, Haffer S, Wagner T, Tiemann M. Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior. Sensors Actuators B Chem. 2015;206:133. https://doi.org/10.1016/j.snb.2014.09.025.

    Article  CAS  Google Scholar 

  9. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050. https://doi.org/10.3762/bjnano.9.98.

    Article  Google Scholar 

  10. Patil P, Gaikwad G, Patil DR, Naik J. Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO nanocomposites for photocatalysis and gas sensor applications. Bull Mater Sci. 2016;39(3):655. https://doi.org/10.1007/s12034-016-1208-9.

    Article  CAS  Google Scholar 

  11. Kim HJ, Lee JH. Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sensors Actuators B Chem. 2014;192:607. https://doi.org/10.1016/j.snb.2013.11.005.

    Article  CAS  Google Scholar 

  12. Li Z, Li H, Wu Z, Wang M, Luo J, Torun H, Hu P, Yang C, Grundmann M, Liu X, Fu Y. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horiz. 2019;6(3):470. https://doi.org/10.1039/c8mh01365a.

    Article  CAS  Google Scholar 

  13. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248. https://doi.org/10.1002/adma.201102306.

    Article  CAS  Google Scholar 

  14. Xiong D, Li X, Bai Z, Lu S. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018;14(17):1703419. https://doi.org/10.1002/smll.201703419.

    Article  CAS  Google Scholar 

  15. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces. 2014;6(14):11173. https://doi.org/10.1021/am501144q.

    Article  CAS  Google Scholar 

  16. Li N, Jiang Y, Zhou C, Xiao Y, Meng B, Wang Z, Huang D, Xing C, Peng Z. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl Mater Interfaces. 2019;11(41):38116. https://doi.org/10.1021/acsami.9b12168.

    Article  CAS  Google Scholar 

  17. Meng W, Liu X, Song H, Xie Y, Shi X, Dargusch M, Chen ZG, Tang Z, Lu S. Advances and challenges in 2D MXenes: from structures to energy storage and conversions. Nano Today. 2021;40: 101273. https://doi.org/10.1016/j.nantod.2021.101273.

    Article  CAS  Google Scholar 

  18. Magnuson M, Mattesini M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films. 2017;621:108. https://doi.org/10.1016/j.tsf.2016.11.005.

    Article  CAS  Google Scholar 

  19. Zhou J, Zha X, Zhou X, Chen F, Gao G, Wang S, Shen C, Chen T, Zhi C, Eklund P, Du S, Xue J, Shi W, Chai Z, Huang Q. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano. 2017;11(4):3841. https://doi.org/10.1021/acsnano.7b00030.

    Article  CAS  Google Scholar 

  20. Li Z, Wang L, Sun D, Zhang Y, Liu B, Hu Q, Zhou A. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B. 2015;191:33. https://doi.org/10.1016/j.mseb.2014.10.009.

    Article  CAS  Google Scholar 

  21. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098. https://doi.org/10.1038/natrevmats.2016.98.

    Article  CAS  Google Scholar 

  22. Zhang Y, Wang L, Zhang N, Zhou Z. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018;8(36):19895. https://doi.org/10.1039/c8ra03077d.

    Article  CAS  Google Scholar 

  23. Deshmukh K, Kovářík T, Pasha SKK. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: a comprehensive review. Coord Chem Rev. 2020;424: 213514. https://doi.org/10.1016/j.ccr.2020.213514.

    Article  CAS  Google Scholar 

  24. Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13(8):8491. https://doi.org/10.1021/acsnano.9b06394.

    Article  CAS  Google Scholar 

  25. Yu XF, Li Y, Chen JB, Liu ZB, Li QZ, Li WZ, Yang X, Xiao B. Monolayer Ti2CO2, a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces. 2015;7(24):13707. https://doi.org/10.1021/acsami.5b03737.

    Article  CAS  Google Scholar 

  26. Wang Z, Wang F, Hermawan A, Asakura Y, Hasegawa T, Kumagai H, Kato H, Kakihana M, Zhu J, Yin S. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature. J Mater Sci Technol. 2021;73:128. https://doi.org/10.1016/j.jmst.2020.07.040.

    Article  CAS  Google Scholar 

  27. Aghaei SM, Aasi A, Panchapakesan B. Experimental and theoretical advances in MXene-based gas sensors. ACS Omega. 2021;6(4):2450. https://doi.org/10.1021/acsomega.0c05766.

    Article  CAS  Google Scholar 

  28. Li Q, Li Y, Zeng W. Preparation and application of 2D MXene-based gas sensors: a review. Chemosensors. 2021;9(8):225. https://doi.org/10.3390/chemosensors9080225.

    Article  CAS  Google Scholar 

  29. Lee E, VahidMohammadi A, Prorok BC, Yoon YS, Beidaghi M, Kim DJ. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces. 2017;9(42):37184. https://doi.org/10.1021/acsami.7b11055.

    Article  CAS  Google Scholar 

  30. Wu M, He M, Hu Q, Wu Q, Sun G, Xie L, Zhang Z, Zhu Z, Zhou A. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019;4(10):2763. https://doi.org/10.1021/acssensors.9b01308.

    Article  CAS  Google Scholar 

  31. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. 2018;12(2):986. https://doi.org/10.1021/acsnano.7b07460.

    Article  CAS  Google Scholar 

  32. Chen WY, Jiang X, Lai SN, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11(1):1302. https://doi.org/10.1038/s41467-020-15092-4.

    Article  CAS  Google Scholar 

  33. Anasori B, Shi C, Moon EJ, Xie Y, Voigt CA, Kent PRC, May SJ, Billinge SJL, Barsoum MW, Gogotsi Y. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 2016;1(3):227. https://doi.org/10.1039/c5nh00125k.

    Article  CAS  Google Scholar 

  34. An KH, Jeong SY, Hwang HR, Lee YH. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Adv Mater. 2004;16(12):1005. https://doi.org/10.1002/adma.200306176.

    Article  CAS  Google Scholar 

  35. Zhang Y, Jiang Y, Duan Z, Huang Q, Wu Y, Liu B, Zhao Q, Wang S, Yuan Z, Tai H. Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling. Sensors Actuators B Chem. 2021;344: 130150. https://doi.org/10.1016/j.snb.2021.130150.

    Article  CAS  Google Scholar 

  36. Yang Z, Liu A, Wang C, Liu F, He J, Li S, Wang J, You R, Yan X, Sun P, Duan Y, Lu G. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019;4(5):1261. https://doi.org/10.1021/acssensors.9b00127.

    Article  CAS  Google Scholar 

  37. Kuang D, Wang L, Guo X, She Y, Du B, Liang C, Qu W, Sun X, Wu Z, Hu W, He Y. Facile hydrothermal synthesis of Ti3C2Tx-TiO2 nanocomposites for gaseous volatile organic compounds detection at room temperature. J Hazard Mater. 2021;416: 126171. https://doi.org/10.1016/j.jhazmat.2021.126171.

    Article  CAS  Google Scholar 

  38. Guo X, Ding Y, Kuang D, Wu Z, Sun X, Du B, Liang C, Wu Y, Qu W, Xiong L, He Y. Enhanced ammonia sensing performance based on MXene-Ti3C2Tx multilayer nanoflakes functionalized by tungsten trioxide nanoparticles. J Colloid Interface Sci. 2021;595:6. https://doi.org/10.1016/j.jcis.2021.03.115.

    Article  CAS  Google Scholar 

  39. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sensors Actuators B Chem. 2019;298: 126874. https://doi.org/10.1016/j.snb.2019.126874.

    Article  CAS  Google Scholar 

  40. Zhang D, Yu S, Wang X, Huang J, Pan W, Zhang J, Meteku BE, Zeng J. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J Hazard Mater. 2022;423(Pt B): 127160. https://doi.org/10.1016/j.jhazmat.2021.127160.

    Article  CAS  Google Scholar 

  41. Sun S, Wang M, Chang X, Jiang Y, Zhang D, Wang D, Zhang Y, Lei Y. W18O49/Ti3C2Tx MXene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensors Actuators B Chem. 2020;304: 127274. https://doi.org/10.1016/j.snb.2019.127274.

    Article  CAS  Google Scholar 

  42. Hermawan A, Zhang B, Taufik A, Asakura Y, Hasegawa T, Zhu J, Shi P, Yin S. CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl Nano Mater. 2020;3(5):4755. https://doi.org/10.1021/acsanm.0c00749.

    Article  CAS  Google Scholar 

  43. Dey A. Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B. 2018;229:206. https://doi.org/10.1016/j.mseb.2017.12.036.

    Article  CAS  Google Scholar 

  44. Phuong DTH, Hong WG, Noh JS. Palladium nanoparticle-decorated multi-layer Ti3C2Tx dual-functioning as a highly sensitive hydrogen gas sensor and hydrogen storage. RSC Adv. 2021;11(13):7492. https://doi.org/10.1016/j.mseb.2017.12.036.

    Article  CAS  Google Scholar 

  45. Zhang C, Luo Y, Xu J, Debliquy M. Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sensors Actuators A Phys. 2019;289:118. https://doi.org/10.1016/j.sna.2019.02.027.

    Article  CAS  Google Scholar 

  46. Wang J, Li X, Xia Y, Komarneni S, Chen H, Xu J, Xiang L, Xie D. Hierarchical ZnO nanosheet-nanorod architectures for fabrication of poly(3-hexylthiophene)/ZnO hybrid NO2 sensor. ACS Appl Mater Interfaces. 2016;8(13):8600. https://doi.org/10.1021/acsami.5b12553.

    Article  CAS  Google Scholar 

  47. Van Quang V, Van Dung N, Sy Trong N, Duc Hoa N, Van Duy N, Van Hieu N. Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl Phys Lett. 2014;105(1): 013107. https://doi.org/10.1063/1.4887486.

    Article  CAS  Google Scholar 

  48. Lu G, Ocola LE, Chen J. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology. 2009;20(44): 445502. https://doi.org/10.1088/0957-4484/20/44/445502.

    Article  CAS  Google Scholar 

  49. Kim K, Park HJ, Woo BC, Kim KJ, Kim GT, Yun WS. Electric property evolution of structurally defected multilayer graphene. Nano Lett. 2008;8:3092. https://doi.org/10.1021/nl8010337.

    Article  CAS  Google Scholar 

  50. Lee E, VahidMohammadi A, Yoon YS, Beidaghi M, Kim DJ. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019;4(6):1603. https://doi.org/10.1021/acssensors.9b00303.

    Article  CAS  Google Scholar 

  51. Guo W, Surya SG, Babar V, Ming F, Sharma S, Alshareef HN, Schwingenschlogl U, Salama KN. Selective toluene detection with Mo2CTx MXene at room temperature. ACS Appl Mater Interfaces. 2020;12(51):1603. https://doi.org/10.1021/acsami.0c16302.

    Article  CAS  Google Scholar 

  52. Yang Z, Jiang L, Wang J, Liu F, He J, Liu A, Lv S, You R, Yan X, Sun P, Wang C, Duan Y, Lu G. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensors Actuators B Chem. 2021;326: 128828. https://doi.org/10.1016/j.snb.2020.128828.

    Article  CAS  Google Scholar 

  53. Yuan W, Yang K, Peng H, Li F, Yin F. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J Mater Chem A. 2018;6(37):18116. https://doi.org/10.1039/c8ta06928j.

    Article  CAS  Google Scholar 

  54. Liu M, Wang Z, Song P, Yang Z, Wang Q. Flexible MXene/rGO/CuO hybrid aerogels for high performance acetone sensing at room temperature. Sensors Actuators B Chem. 2021;340: 129946. https://doi.org/10.1016/j.snb.2021.129946.

    Article  CAS  Google Scholar 

  55. Sun Q, Wang J, Wang X, Dai J, Wang X, Fan H, Wang Z, Li H, Huang X, Huang W. Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. Nanoscale. 2020;12(32):16987. https://doi.org/10.1039/c9nr08350b.

    Article  CAS  Google Scholar 

  56. Xiong K, Wang P, Yang G, Liu Z, Zhang H, Jin S, Xu X. Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Sci Rep. 2017;7(1):15095. https://doi.org/10.1038/s41598-017-15233-8.

    Article  CAS  Google Scholar 

  57. Hou M, Guo S, Yang L, Gao J, Hu T, Wang X, Li Y. Improvement of gas sensing property for two-dimensional Ti3C2Tx treated with oxygen plasma by microwave energy excitation. Ceram Int. 2021;47(6):7728. https://doi.org/10.1016/j.ceramint.2020.11.117.

    Article  CAS  Google Scholar 

  58. Hong LF, Guo RT, Yuan Y, Ji XY, Li ZS, Lin ZD, Pan WG. Recent progress of two-dimensional MXenes in photocatalytic applications: a review. Mater Today Energy. 2020;18:10052. https://doi.org/10.1016/j.mtener.2020.100521.

    Article  CAS  Google Scholar 

  59. Shuvo SN, Gomez AMU, Mishra A, Chen WY, Dongare AM, Stanciu LA. Sulfur-doped titanium carbide MXenes for room-temperature gas sensing. ACS Sens. 2020;5(9):2915. https://doi.org/10.1021/acssensors.0c01287.

    Article  CAS  Google Scholar 

  60. Zeng Y, Zhang T, Wang L, Kang M, Fan H, Wang R, He Y. Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures. Sensors Actuators B Chem. 2009;140(1):73. https://doi.org/10.1016/j.snb.2009.03.071.

    Article  CAS  Google Scholar 

  61. Liu L, Zhang Y, Wang G, Li S, Wang L, Han Y, Jiang X, Wei A. High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C. Sensors Actuators B Chem. 2011;160(1):448. https://doi.org/10.1016/j.snb.2011.08.007.

    Article  CAS  Google Scholar 

  62. Chen WY, Lai SN, Yen CC, Jiang X, Peroulis D, Stanciu LA. Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano. 2020;14(9):11490. https://doi.org/10.1021/acsnano.0c03896.

    Article  CAS  Google Scholar 

  63. Zhu Z, Liu C, Jiang F, Liu J, Ma X, Liu P, Xu J, Wang L, Huang R. Flexible and lightweight Ti3C2Tx MXene@Pd colloidal nanoclusters paper film as novel H2 sensor. J Hazard Mater. 2020;399: 123054. https://doi.org/10.1016/j.jhazmat.2020.123054.

    Article  CAS  Google Scholar 

  64. Wang Y, Meng X, Yao M, Sun G, Zhang Z. Enhanced CH4 sensing properties of Pd modified ZnO nanosheets. Ceram Int. 2019;45(10):13150. https://doi.org/10.1016/j.ceramint.2019.03.250.

    Article  CAS  Google Scholar 

  65. Liu J, Peng W, Li Y, Zhang F, Fan X. 2D MXene-based materials for electrocatalysis. Trans Tianjin Univ. 2020;26(3):149. https://doi.org/10.1007/s12209-020-00235-x.

    Article  CAS  Google Scholar 

  66. Khazaei M, Arai M, Sasaki T, Chung CY, Venkataramanan NS, Estili M, Sakka Y, Kawazoe Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv Funct Mater. 2013;23(17):2185. https://doi.org/10.1002/adfm.201202502.

    Article  CAS  Google Scholar 

  67. Kuang D, Guo X, Zhu Z, Ding Y, Sun X, Wu Z, Zhang L, Zhou Y, He Y. Enhanced room temperature ammonia response of 2D-Ti3C2Tx MXene decorated with Ni(OH)2 nanoparticles. Ceram Int. 2021;47(14):19471. https://doi.org/10.1016/j.ceramint.2021.03.284.

    Article  CAS  Google Scholar 

  68. Xiao R, Zhao C, Zou Z, Chen Z, Tian L, Xu H, Tang H, Liu Q, Lin Z, Yang X. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B. 2020;268: 118382. https://doi.org/10.1016/j.apcatb.2019.118382.

    Article  CAS  Google Scholar 

  69. Ding M, Han C, Yuan Y, Xu J, Yang X. Advances and promises of 2D MXenes as cocatalysts for artificial photosynthesis. Sol RRL. 2021;5(12):2100603. https://doi.org/10.1002/solr.202100603.

    Article  CAS  Google Scholar 

  70. Ding M, Xiao R, Zhao C, Bukhvalov D, Chen Z, Xu H, Tang H, Xu J, Yang X. Evidencing interfacial charge transfer in 2D CdS/2D MXene Schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Sol RRL. 2020;5(2):2000414. https://doi.org/10.1002/solr.202000414.

    Article  CAS  Google Scholar 

  71. Wang R, Wang S, Zhang Y, Jin D, Tao X, Zhang L. Graphene-coupled Ti3C2 MXenes-derived TiO2 mesostructure: promising sodium-ion capacitor anode with fast ion storage and long-term cycling. J Mater Chem A. 2018;6(3):1017. https://doi.org/10.1039/c7ta09153b.

    Article  CAS  Google Scholar 

  72. Choi J, Kim YJ, Cho SY, Park K, Kang H, Kim SJ, Jung HT. In situ formation of multiple Schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv Funct Mater. 2020;30(40):2003998. https://doi.org/10.1002/adfm.202003998.

    Article  CAS  Google Scholar 

  73. Pazniak H, Plugin IA, Loes MJ, Inerbaev TM, Burmistrov IN, Gorshenkov M, Polcak J, Varezhnikov AS, Sommer M, Kuznetsov DV, Bruns M, Fedorov FS, Vorobeva NS, Sinitskii A, Sysoev VV. Partially oxidized Ti3C2Tx MXenes for fast and selective detection of organic vapors at part-per-million concentrations. ACS Appl Nano Mater. 2020;3(4):3195. https://doi.org/10.1021/acsanm.9b02223.

    Article  CAS  Google Scholar 

  74. Jurs PC, Bakken GA, McClelland HE. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev. 2000;100:2649. https://doi.org/10.1021/cr9800964.

    Article  CAS  Google Scholar 

  75. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR. Cross-reactive chemical sensor arrays. Chem Rev. 2000;100(7):2595. https://doi.org/10.1021/cr980102w.

    Article  CAS  Google Scholar 

  76. Sysoev VV, Kiselev I, Frietsch M, Goschnick J. Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray. Sensors. 2004;4(4):37. https://doi.org/10.3390/s40400037.

    Article  CAS  Google Scholar 

  77. Sysoev VV, Goschnick J, Schneider T, Strelcov E, Kolmakov A. A gradient microarray electronic nose based on percolating SnO2 nanowire sensing elements. Nano Lett. 2007;7(10):3182. https://doi.org/10.1021/nl071815+.

    Article  CAS  Google Scholar 

  78. Zhou Y, Gao C, Guo Y. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature. J Mater Chem A. 2018;6(22):10286. https://doi.org/10.1039/c8ta02679c.

    Article  CAS  Google Scholar 

  79. Sun M, Liu X, Zhao G, Kong W, Xuan J, Tan S, Sun Y, Wei S, Ren J, Yin G. Sn4+ doping combined with hydrogen treatment for CdS/TiO2 photoelectrodes: an efficient strategy to improve quantum dots loading and charge transport for high photoelectrochemical performance. J Power Sources. 2019;430:80. https://doi.org/10.1016/j.jpowsour.2019.05.019.

    Article  CAS  Google Scholar 

  80. Zhao G, Sun M, Liu X, Xuan J, Kong W, Zhang R, Sun Y, Jia F, Yin G, Liu B. Fabrication of CdS quantum dots sensitized ZnO nanorods/TiO2 nanosheets hierarchical heterostructure films for enhanced photoelectrochemical performance. Electrochim Acta. 2019;304:334. https://doi.org/10.1016/j.electacta.2019.03.022.

    Article  CAS  Google Scholar 

  81. Liu M, Wang Z, Song P, Yang Z, Wang Q. In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature. Ceram Int. 2021;47(16):23028. https://doi.org/10.1016/j.ceramint.2021.05.016.

    Article  CAS  Google Scholar 

  82. Liu M, Ji J, Song P, Liu M, Wang Q. α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sensors Actuators B Chem. 2021;349:130782. https://doi.org/10.1016/j.snb.2021.130782.

    Article  CAS  Google Scholar 

  83. He T, Liu W, Lv T, Ma M, Liu Z, Vasiliev A, Li X. MXene/SnO2 heterojunction based chemical gas sensors. Sensors Actuators B Chem. 2021;329:129275. https://doi.org/10.1016/j.snb.2020.129275.

    Article  CAS  Google Scholar 

  84. Zou S, Gao J, Liu L, Lin Z, Fu P, Wang S, Chen Z. Enhanced gas sensing properties at low working temperature of iron molybdate/MXene composite. J Alloys Compd. 2020;817: 152785. https://doi.org/10.1016/j.jallcom.2019.152785.

    Article  CAS  Google Scholar 

  85. Fu Y, Zang W, Wang P, Xing L, Xue X, Zhang Y. Portable room-temperature self-powered/active H2 sensor driven by human motion through piezoelectric screening effect. Nano Energy. 2014;8:34. https://doi.org/10.1016/j.nanoen.2014.05.012.

    Article  CAS  Google Scholar 

  86. Zhang D, Mi Q, Wang D, Li T. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sensors Actuators B Chem. 2021;339:129923. https://doi.org/10.1016/j.snb.2021.129923.

    Article  CAS  Google Scholar 

  87. Abdulla S, Mathew TL, Pullithadathil B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B Chem. 2015;221:1523. https://doi.org/10.1016/j.snb.2015.08.002.

    Article  CAS  Google Scholar 

  88. Wang W, Li Z, Jiang T, Zhao Z, Li Y, Wang Z, Wang C. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors. ACS Appl Mater Interfaces. 2012;4(11):6080. https://doi.org/10.1021/am301712t.

    Article  CAS  Google Scholar 

  89. Bai S, Guo J, Sun J, Tang P, Chen A, Luo R, Li D. Enhancement of NO2-sensing performance at room temperature by graphene-modified polythiophene. Ind Eng Chem Res. 2016;55(19):5788. https://doi.org/10.1021/am301712t.

    Article  CAS  Google Scholar 

  90. Lin CY, Chen JG, Hu CW, Tunney JJ, Ho KC. Using a PEDOT:PSS modified electrode for detecting nitric oxide gas. Sensors Actuators B Chem. 2009;140(2):402. https://doi.org/10.1016/j.snb.2009.04.041.

    Article  CAS  Google Scholar 

  91. Park SJ, Park CS, Yoon H. Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers. 2017;9(5):155. https://doi.org/10.3390/polym9050155.

    Article  CAS  Google Scholar 

  92. Zhao L, Wang K, Wei W, Wang L, Han W. High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat. 2019;1(3):407. https://doi.org/10.1002/inf2.12032.

    Article  CAS  Google Scholar 

  93. Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: a review. Sensors Actuators A Phys. 2017;267:242. https://doi.org/10.1016/j.sna.2017.10.021.

    Article  CAS  Google Scholar 

  94. Zhao L, Zheng Y, Wang K, Lv C, Wei W, Wang L, Han W. Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv Mater Technol. 2020;5(7):2000248. https://doi.org/10.1002/admt.202000248.

    Article  CAS  Google Scholar 

  95. Li X, Xu J, Jiang Y, He Z, Liu B, Xie H, Li H, Li Z, Wang Y, Tai H. Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sensors Actuators B Chem. 2020;316: 128144. https://doi.org/10.1016/j.snb.2020.128144.

    Article  CAS  Google Scholar 

  96. Liu C, Tai H, Zhang P, Yuan Z, Du X, Xie G, Jiang Y. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sensors Actuators B Chem. 2018;261:587. https://doi.org/10.1016/j.snb.2017.12.022.

    Article  CAS  Google Scholar 

  97. Gavgani JN, Hasani A, Nouri M, Mahyari M, Salehi A. Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sensors Actuators B Chem. 2016;229:239. https://doi.org/10.1016/j.snb.2016.01.086.

    Article  CAS  Google Scholar 

  98. Jin L, Wu C, Wei K, He L, Gao H, Zhang H, Zhang K, Asiri AM, Alamry KA, Yang L, Chu X. Polymeric Ti3C2Tx MXene composites for room temperature ammonia sensing. ACS Appl Nano Mater. 2020;3(12):12071. https://doi.org/10.1021/acsanm.0c02577.

    Article  CAS  Google Scholar 

  99. Gund GS, Park JH, Harpalsinh R, Kota M, Shin JH, Kim TI, Gogotsi Y, Park HS. MXene/polymer hybrid materials for flexible AC-filtering electrochemical capacitors. Joule. 2019;3(1):164. https://doi.org/10.1016/j.joule.2018.10.017.

    Article  CAS  Google Scholar 

  100. Thirumalairajan S, Girija K, Mastelaro VR, Ponpandian N. Surface morphology-dependent room-temperature LaFeO3 nanostructure thin films as selective NO2 gas sensor prepared by radio frequency magnetron sputtering. ACS Appl Mater Interfaces. 2014;6(16):13917. https://doi.org/10.1021/am503318y.

    Article  CAS  Google Scholar 

  101. Wu Z, Chen X, Zhu S, Zhou Z, Yao Y, Quan W, Liu B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors Actuators B Chem. 2013;178:485. https://doi.org/10.1016/j.snb.2013.01.014.

    Article  CAS  Google Scholar 

  102. Wang X, Sun K, Li K, Li X, Gogotsi Y. Ti3C2Tx/PEDOT:PSS hybrid materials for room-temperature methanol sensor. Chin Chem Lett. 2020;31(4):1018. https://doi.org/10.1016/j.cclet.2019.11.031.

    Article  CAS  Google Scholar 

  103. Wang S, Jiang Y, Liu B, Duan Z, Pan H, Yuan Z, Xie G, Wang J, Fang Z, Tai H. Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: enabling ultrasensitive NH3 detection. Sensors Actuators B Chem. 2021;343:130069. https://doi.org/10.1016/j.snb.2021.130069.

    Article  CAS  Google Scholar 

  104. Liu B, Wang S, Yuan Z, Duan Z, Zhao Q, Zhang Y, Su Y, Jiang Y, Xie G, Tai H. Novel chitosan/ZnO bilayer film with enhanced humidity-tolerant property: endowing triboelectric nanogenerator with acetone analysis capability. Nano Energy. 2020;78:105256. https://doi.org/10.1016/j.nanoen.2020.105256.

    Article  CAS  Google Scholar 

  105. Wang S, Liu B, Duan Z, Zhao Q, Zhang Y, Xie G, Jiang Y, Li S, Tai H. PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature. Sensors Actuators B Chem. 2021;327:128923. https://doi.org/10.1016/j.snb.2020.128923.

    Article  CAS  Google Scholar 

  106. Li T, Yao L, Liu Q, Gu J, Luo R, Li J, Yan X, Wang W, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Fluorine-free synthesis of high-purity Ti3C2Tx (T= OH, O) via alkali treatment. Angew Chem Int Ed Engl. 2018;57(21):6115. https://doi.org/10.1002/anie.201800887.

    Article  CAS  Google Scholar 

  107. Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano. 2016;10(3):3398. https://doi.org/10.1021/acsnano.5b07304.

    Article  CAS  Google Scholar 

  108. Osti NC, Naguib M, Ganeshan K, Shin YK, Ostadhossein A, van Duin ACT, Cheng Y, Daemen LL, Gogotsi Y, Mamontov E, Kolesnikov AI. Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers. Phys Rev Mater. 2017;1(6):65406. https://doi.org/10.1103/PhysRevMaterials.1.065406.

    Article  Google Scholar 

  109. Zheng W, Zhang P, Tian W, Qin X, Yamei Z, Sun Z. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater Chem Phys. 2018;206:270. https://doi.org/10.1016/j.matchemphys.2017.12.034.

    Article  CAS  Google Scholar 

  110. Osti NC, Naguib M, Ostadhossein A, Xie Y, Kent PR, Dyatkin B, Rother G, Heller WT, van Duin AC, Gogotsi Y, Mamontov E. Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl Mater Interfaces. 2016;8(14):8859. https://doi.org/10.1021/acsami.6b01490.

    Article  CAS  Google Scholar 

  111. Koh HJ, Kim SJ, Maleski K, Cho SY, Kim YJ, Ahn CW, Gogotsi Y, Jung HT. Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ X-ray diffraction study. ACS Sens. 2019;4(5):1365. https://doi.org/10.1021/acssensors.9b00310.

    Article  CAS  Google Scholar 

  112. Ghidiu M, Halim J, Kota S, Bish D, Gogotsi Y, Barsoum MW. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem Mater. 2016;28(10):3507. https://doi.org/10.1021/acs.chemmater.6b01275.

    Article  CAS  Google Scholar 

  113. Xiao B, Li YC, Yu XF, Cheng JB. MXenes: reusable materials for NH3 sensor or capturer by controlling the charge injection. Sensors Actuators B Chem. 2016;235:103. https://doi.org/10.1016/j.snb.2016.05.062.

    Article  CAS  Google Scholar 

  114. Sun B, Lv H, Liu Z, Wang J, Bai X, Zhang Y, Chen J, Kan K, Shi K. Co3O4@PEI/Ti3C2Tx MXene nanocomposites for a highly sensitive NOx gas sensor with a low detection limit. J Mater Chem A. 2021;9(10):6335. https://doi.org/10.1039/d0ta11392a.

    Article  CAS  Google Scholar 

  115. Farrell P, Peschka D. Nonlinear diffusion, boundary layers and nonsmoothness: analysis of challenges in drift–diffusion semiconductor simulations. Comput Math Appl. 2019;78(12):3731. https://doi.org/10.1016/j.camwa.2019.06.007.

    Article  Google Scholar 

  116. Li W, Jung H, Hoa ND, Kim D, Hong SK, Kim H. Nanocomposite of cobalt oxide nanocrystals and single-walled carbon nanotubes for a gas sensor application. Sensors Actuators B Chem. 2010;150(1):160. https://doi.org/10.1016/j.snb.2010.07.023.

    Article  CAS  Google Scholar 

  117. Dong Z, Jiang C, Cheng H, Zhao Y, Shi G, Jiang L, Qu L. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater. 2012;24(14):1856. https://doi.org/10.1002/adma.201200170.

    Article  CAS  Google Scholar 

  118. Xin J, Yao T, Sun H, Scott SM, Shao D, Wang G, Lian J. Highly thermally conductive and mechanically strong graphene fibers. Science. 2015;349(6252):1083. https://doi.org/10.1126/science.aab2633.

    Article  CAS  Google Scholar 

  119. Lee SH, Eom W, Shin H, Ambade RB, Bang JH, Kim HW, Han TH. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl Mater Interfaces. 2020;12(9):10434. https://doi.org/10.1021/acsami.9b21765.

    Article  CAS  Google Scholar 

  120. Choi YR, Yoon YG, Choi KS, Kang JH, Shim YS, Kim YH, Chang HJ, Lee JH, Park CR, Kim SY, Jang HW. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon. 2015;91:178. https://doi.org/10.1016/j.carbon.2015.04.082.

    Article  CAS  Google Scholar 

  121. Zhu M, Dong Y, Xiao B, Du Y, Yang P, Wang X. Enhanced photocatalytic hydrogen evolution performance based on Ru-trisdicarboxybipyridine-reduced graphene oxide hybrid. J Mater Chem. 2012;22(45):23773. https://doi.org/10.1039/c2jm35322a.

    Article  CAS  Google Scholar 

  122. Han Y, Liu Y, Su C, Chen X, Li B, Jiang W, Zeng M, Hu N, Su Y, Zhou Z, Zhu ZG, Yang Z. Hierarchical WS2–WO3 nanohybrids with p–n heterojunctions for NO2 detection. ACS Appl Nano Mater. 2021;4(2):1626. https://doi.org/10.1021/acsanm.0c03094.

    Article  CAS  Google Scholar 

  123. Ding X, Peng F, Zhou J, Gong W, Slaven G, Loh KP, Lim CT, Leong DT. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat Commun. 2019;10(1):41. https://doi.org/10.1038/s41467-018-07835-1.

    Article  CAS  Google Scholar 

  124. Chen B, Chao D, Liu E, Jaroniec M, Zhao N, Qiao SZ. Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy Environ Sci. 2020;13(4):1096. https://doi.org/10.1039/c9ee03549d.

    Article  CAS  Google Scholar 

  125. Chen T, Yan W, Wang Y, Li J, Hu H, Ho D. SnS2/MXene derived TiO2 hybrid for ultra-fast room temperature NO2 gas sensing. J Mater Chem C. 2021;9(23):7407. https://doi.org/10.1039/d1tc00197c.

    Article  CAS  Google Scholar 

  126. Yu XF, Li YC, Cheng JB, Liu ZB, Li QZ, Li WZ, Yang X, Xiao B. Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces. 2015;7(24):13707. https://doi.org/10.1021/acsami.5b03737.

    Article  CAS  Google Scholar 

  127. Hajian S, Khakbaz P, Moshayedi M, Maddipatla D, Narakathu BB, Turkani VS, Bazuin BJ, Pourfath M, Atashbar MZ. Impact of different ratios of fluorine, oxygen, and hydroxyl surface terminations on Ti3C2Tx MXene as ammonia sensor: a first-principles study. IEEE Sens. 2018. https://doi.org/10.1109/ICSENS.2018.8589699.

    Article  Google Scholar 

  128. Li L, Cao H, Liang Z, Cheng Y, Yin T, Liu Z, Yan S, Jia S, Li L, Wang J, Gao Y. First-principles study of Ti-deficient Ti3C2 MXene nanosheets as NH3 gas sensors. ACS Appl Nano Mater. 2022;5(2):2470. https://doi.org/10.1021/acsanm.1c04158.

    Article  CAS  Google Scholar 

  129. Li SS, Cui XH, Li XH, Yan HT, Zhang RZ, Cui HL. Effect of coexistence of vacancy and strain on the electronic properties of NH3 adsorption on the Hf2CO2 MXene from first-principles calculations. Vacuum. 2022;196: 110774. https://doi.org/10.1016/j.vacuum.2021.110774.

    Article  CAS  Google Scholar 

  130. Yang D, Fan X, Zhao D, An Y, Hu Y, Luo Z. Sc2CO2 and Mn-doped Sc2CO2 as gas sensor materials to NO and CO: a first-principles study. Physica E Low Dimens Syst Nanostruct. 2019;111:84. https://doi.org/10.1016/j.physe.2019.02.019.

    Article  CAS  Google Scholar 

  131. Khaledialidusti R, Mishra AK, Barnoush A. Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J Mater Chem C. 2020;8(14):4771. https://doi.org/10.1039/C9TC06046D.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11904209 and 61904098), the Natural Science Foundation of Shandong Province (No. ZR2019QF018) and the Higher Education Research and Development Program of Shandong Province (No. J18KA242).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-Chao Yin or Si-Yu Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HF., Xuan, JY., Zhang, Q. et al. Strategies and challenges for enhancing performance of MXene-based gas sensors: a review. Rare Met. 41, 3976–3999 (2022). https://doi.org/10.1007/s12598-022-02087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02087-x

Keywords

Navigation