Skip to main content

Advertisement

Log in

Recent advances in transition metal chalcogenides for lithium-ion capacitors

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Transition metal chalcogenides (TMCs) and TMCs-based nanocomposites have attracted extensive attention due to their versatile material species, low cost, and rich physical and chemical characteristics. As anode materials of lithium-ion capacitors (LICs), TMCs have exhibited high theoretical capacities and pseudocapacitance storage mechanism. However, there are many intrinsic challenges, such as low electrical conductivity, repeatedly high-volume changes and sluggish ionic diffusion kinetics. Hence, many traditional and unconventional techniques have been reported to solve these critical problems, and many innovative strategies are also used to prepare high quality anode materials for LICs. In this mini review, a detailed family member list and comparison of TMCs in the field of lithium-ion capacitors have been summarized firstly. Then, many rectification stratagems and recent researches of TMCs have been exhibited and discussed. In the end, as an outcome of these discussions, some further challenges and perspectives are envisioned to promote the application of TMCs materials for lithium-ion capacitors.

Graphical abstract

摘要

过渡金属硫族化合物 (TMCs) 和基于TMCs的纳米复合材料由于其材料种类多样, 成本低和丰富的物理和化学特性而受到广泛关注. 作为锂离子电容器的负极材料, TMCs具有较高的理论比容量和赝电容存储机制, 然而仍存在许多固有的挑战, 例如低电导率, 反复的高体积变化和缓慢的离子扩散动力学. 因此, 基于上述问题已经报道了许多传统和非常规解决策略, 并且许多具有创新性的方法被用于制备高性能锂离子电容器负极材料. 这篇综述首先汇总了用于锂离子电容器负极的TMCs材料, 并对各种TMCs的性能进行了比较。然后讨论了TMCs的许多改性策略和最新研究进展. 最后, 作为这些讨论的结果, 对TMCs材料在锂离子电容器中发展的前景进行了分析和展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [37]. Copyright 2018, Springer Nature

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li C, Zhang X, Wang K, Sun XZ, Li C, Zhang X, Wang K, Sun X, Liu G, Li J, Tian H, Li J, Ma YW. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv Mater. 2017;29(7):1604690.

    Article  Google Scholar 

  2. Liu WJ, Sun XZ, Zhang X, Li C, Wang K, Wen W, Ma YW. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li-ion battery. Rare Met. 2021;40(3):521.

    Article  CAS  Google Scholar 

  3. Li C, Zhang X, Wang K, Sun XZ, Ma YW. Magnesiothermic sequestration of CO2 into carbon nanomaterials for electrochemical energy storage: a mini review. Electrochem Commun. 2021;130:107109.

    Article  CAS  Google Scholar 

  4. An YB, Liu T, Li C, Zhang X, Hu T, Sun XZ, Wang K, Wang C, Ma YW. A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors. J Mater Chem A. 2021;9:15654.

    Article  CAS  Google Scholar 

  5. Sun Y, Xue J, Li Z, Ding B, An Y, Zang S, Dou H, Jiang J, Zhang X. Rational design of ZIF-8 assimilated hierarchical porous carbon nanofibers as binder-free electrodes for supercapacitors. J Electroanal Chem. 2021;895:11547.

    Article  Google Scholar 

  6. Zhang Q, Liu Z, Zhao B, Cheng Y, Zhang L, Wu HH, Wang MS, Dai S, Zhang K, Ding D, Wu Y, Liu M, Ji L. Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for highperformance asymmetric supercapacitors. Energy Storage Mater. 2019;16:632.

    Article  Google Scholar 

  7. Deng X, Zou K, Momen R, Cai P, Chen J, Hou H, Zou G, Ji X. High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci Bull. 2021;66(18):1858.

    Article  CAS  Google Scholar 

  8. Pan Q, Zhang Q, Zheng F, Liu Y, Li Y, Ou X, Xiong X, Yang C, Liu M. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries. ACS Nano. 2018;12(12):12578.

    Article  CAS  Google Scholar 

  9. Ma M, Zhang S, Wang L, Yao Y, Shao R, Shen L, Yu L, Dai J, Jiang Y, Cheng X, Wu Y, Wu X, Yao X, Zhang Q, Yu Y. Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Adv Mater. 2021;33(45):2106232.

    Article  CAS  Google Scholar 

  10. Ru J, He T, Chen B, Feng Y, Zu L, Wang Z, Zhang Q, Hao T, Meng R, Che R, Zhang C, Yang J. Covalent assembly of MoS2 nanosheets with SnS nanodots as linkages for lithium/sodium-ion batteries. Angew Chem Int Ed. 2020;59(34):14621.

    Article  CAS  Google Scholar 

  11. Liu Y, Jiang Y, Hu Z, Peng J, Lai W, Wu D, Zuo S, Zhang J, Chen B, Dai Z, Yang Y, Huang Y, Zhang W, Zhao W, Zhang W, Wang L, Chou S. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Funct Mater. 2020;31(8):2008033.

    Article  Google Scholar 

  12. Zhang Y, Mu Z, Yang C, Xu Z, Zhang S, Zhang X, Li Y, Lai J, Sun Z, Yang Y, Chao Y, Li C, Ge X, Yang W, Guo S. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv Funct Mater. 2018;28(38):1707578.

    Article  Google Scholar 

  13. Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev. 2016;45(21):5925.

    Article  CAS  Google Scholar 

  14. Li C, Zhang X, Wang K, Su F, Chen CM, Liu F, Wu ZS, Ma YW. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J Energy Chem. 2021;54:352.

    Article  Google Scholar 

  15. Zhu J, Dong S, Xu Y, Guo H, Lu X, Zhang X. Oxygen-enriched crumpled graphene-based symmetric supercapacitor with high gravimetric and volumetric performances. J Electroanal Chem. 2019;833:119.

    Article  CAS  Google Scholar 

  16. Chen C, Jiang J, He W, Lei W, Hao Q, Zhang X. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv Funct Mater. 2020;30(10):1909469.

    Article  CAS  Google Scholar 

  17. Wang L, Bo M, Guo ZC, Li HH, Huang Z, Che HW, Feng Z, Wang Y, Mu JB. Construction of ultra-stable trinickel disulphide (Ni3S2)/polyaniline (PANI) electrodes based on carbon fibers for high performance flexible asymmetric supercapacitors. J Colloid Interface Sci. 2020;577:29.

    Article  CAS  Google Scholar 

  18. Sun Y, Liu N, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy. 2016;1:16071.

    Article  CAS  Google Scholar 

  19. Kocak T, Wu L, Wang J, Savaci U, Turan S, Zhang X. The effect of vanadiumdoping on the cycling performance of LiNi0.5Mn1.5O4 spinel cathode for high voltage lithium-ion batteries. J Electroanal Chem. 2021;881:114926.

    Article  CAS  Google Scholar 

  20. An YB, Che S, Zou M, Geng L, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon-Si composites. Rare Met. 2019;38(2):1113.

    Article  CAS  Google Scholar 

  21. Yi S, Wang L, Zhang X, Li C, Liu WJ, Wang K, Sun XZ, Xu YN, Yang Z, Cao Y, Sun J, Ma YW. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull. 2021;66(9):914.

    Article  CAS  Google Scholar 

  22. Sun CK, Zhang X, Li C, Wang K, Sun XZ, Ma YW. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Mater. 2020;24:160.

    Article  Google Scholar 

  23. Lin Z, Goikolea E, Balducci A, Naoi K, Taberna P, Salanne M, Yushin G, Simon P. Materials for supercapacitors: when Li-ion battery power is not enough. Mater Today. 2018;21(4):419.

    Article  CAS  Google Scholar 

  24. Li C, Zhang X, Wang K, Sun XZ, Ma YW. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode. Carbon. 2018;140:237.

    Article  CAS  Google Scholar 

  25. Jiang J, Zhang Y, Li Z, An Y, Zhu Q, Xu Y, Zang S, Dou H, Zhang X. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors. J Colloid Interface Sci. 2020;567:75.

    Article  CAS  Google Scholar 

  26. Yu P, Cao G, Yi S, Zhang X, Li C, Sun XZ, Wang K, Ma YW. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 2018;10(13):5906.

    Article  CAS  Google Scholar 

  27. Zhang S. Dual-carbon lithium-ion capacitors: principle, materials, and technologies. Batteries Supercaps. 2020;3(11):1137.

    Article  CAS  Google Scholar 

  28. Amatucci G, Badway F, Pasquier AD, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 2001;148(2):A930.

    Article  CAS  Google Scholar 

  29. Zheng J, Xing G, Zhang L, Lu Y, Jin L, Zheng JP. A mini review on high-performance anodes for lithium-ion capacitors. Batteries Supercaps. 2020;4(6):897.

    Article  Google Scholar 

  30. Feng LX, Wang K, Zhang X, Sun XZ, Li C, Ge X, Ma YW. Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater. 2018;28(4):1704463.

    Article  Google Scholar 

  31. Yang M, Zhong Y, Ren J, Zhou X, Wei J, Zhou Z. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater. 2015;5(17):1500550.

    Article  Google Scholar 

  32. Gu H, Zhu YE, Yang J, Wei J, Zhou Z. Nanomaterials and technologies for lithium-ion hybrid supercapacitors. ChemNanoMat. 2016;2(7):578.

    Article  CAS  Google Scholar 

  33. Liu WJ, Zhang X, Xu Y, Wang K, Sun XZ, Su F, Chen C, Liu F, Wu ZS, Ma YW. Recent advances on carbon-based materials for high performance lithium-ion capacitors. Batteries Supercaps. 2021;4(3):407.

    Article  Google Scholar 

  34. Dai YQ, Li GC, Li XH, Guo HJ, Wang ZX, Yan GC, Wang JX. Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors. Rare Met. 2020;39(12):1364.

    Article  CAS  Google Scholar 

  35. Zhang S, Li C, Zhang X, Sun XZ, Wang K, Ma YW. High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode. ACS Appl Mater Interfaces. 2017;9(20):17136.

    Article  CAS  Google Scholar 

  36. Li B, Zheng J, Zhang H, Jin L, Yang D, Lv H, Shen C, Shellikeri A, Zheng Y, Gong R, Zheng JP, Zhang C. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater. 2018;30(17):1705670.

    Article  Google Scholar 

  37. Lu J, Chen Z, Pan F, Cui Y, Amine K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev. 2018;1:35.

    Article  CAS  Google Scholar 

  38. Li C, Zhang X, Lv Z, Wang K, Sun XZ, Chen X, Ma YW. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem Eng J. 2021;414:128781.

    Article  CAS  Google Scholar 

  39. Zou K, Cai P, Cao X, Zou G, Hou H, Ji X. Carbon materials for high-performance lithium-ion capacitor. Curr Opin Electrochem. 2020;21:31.

    Article  CAS  Google Scholar 

  40. Zhang X, Wang L, Liu WJ, Li C, Wang K, Ma YW. Recent advances in MXenes for lithium-ion capacitors. ACS Omega. 2020;5(1):75.

    Article  CAS  Google Scholar 

  41. Guo Y, Zhang L, Xili D, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Met. 2020;45(10):1241.

    Google Scholar 

  42. Ali Z, Zhang T, Asif M, Zhao L, Yu Y, Hou Y. Transition metal chalcogenide anodes for sodium storage. Mater Today. 2020;35:131.

    Article  CAS  Google Scholar 

  43. Stephenson T, Li Z, Olsen B, Mitlin D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci. 2014;7:209.

    Article  CAS  Google Scholar 

  44. Zhan Y, Wei S, Pan K, Dong Z, Zang B, Wu HH, Zhang Q, Lin J, Pang H. Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chem Eng J. 2021;421:129645.

    Article  Google Scholar 

  45. Wang L, Zhang X, Xu YN, Li C, Liu WJ, Yi S, Wang K, Sun XZ, Wu ZS, Ma YW. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv Funct Mater. 2021;31(36):2104286.

    Article  CAS  Google Scholar 

  46. Wang X, Li H, Li H, Lin S, Ding W, Zhu X, Sheng Z, Wang H, Zhu X, Sun Y. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv Funct Mater. 2020;30(15):0190302.

    Article  CAS  Google Scholar 

  47. Guo J, Sun X, Shen K, Li X, Zhang N, Hou T, Fan A, Jin S, Hu X, Li T, Ling R, Cai S, Zheng C. Controllable synthesis of tunable few-layered MoS2 chemically bonding with in situ conversion nitrogen-doped carbon for ultrafast reversible sodium and potassium storage. Chem Eng J. 2020;393:124703.

    Article  CAS  Google Scholar 

  48. Amaresh S, Karthikeyan K, Jang IC, Lee YS. Single-step microwave mediated synthesis of the CoS2 anode material for high rate hybrid supercapacitors. J Mater Chem A. 2014;2(29):11099.

    Article  CAS  Google Scholar 

  49. Zhang H, Wang Y, Kong L. A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe2 nanosheets and their application as an anode for high-energy lithium-ion hybrid capacitors. Nanoscale. 2019;11(15):7263.

    Article  CAS  Google Scholar 

  50. Hu Z, Kuai X, Chen J, Sun P, Zhang Q, Wu HH, Zhang L. Strongly coupled MoS2 nanocrystal/Ti3C2 nanosheet hybrids enable high-capacity lithium-ion storage. Chemsuschem. 2020;13(6):1485.

    Article  CAS  Google Scholar 

  51. Cui Y, Feng W, Wang D, Wang Y, Liu W, Wang H, Jin Y, Yan Y, Hu H, Wu M, Xue Q, Yan Z, Xing W. Water-soluble salt template-assisted anchor of hollow FeS2 nanoparticle inside 3D carbon skeleton to achieve fast potassium-ion storage. Adv Energy Mater. 2021;11(33):2101343.

    Article  CAS  Google Scholar 

  52. Jagadale A, Zhou X, Blaisdell D, Yang S. Carbon nanofibers (CNFs) supported cobalt-nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci Rep. 2018;8(1):1602.

    Article  Google Scholar 

  53. Chaturvedi A, Hu P, Kloc C, Lee Y, Aravindan V, Madhavi S. High energy Li-ion capacitors using twodimensional TiSe0.6S1.4 as insertion host. J Mater Chem A. 2017;5(37):19819.

    Article  CAS  Google Scholar 

  54. Chen ZZ, Hou JG, Zhou J, Huang P, Wang HQ, Xu CX. Carbon shell coated hollow NiCoSex composite as highperformance anode for lithium storage. Rare Met. 2021;40(11):3185.

    Article  CAS  Google Scholar 

  55. Zhang L, Zhang H, Chu X, Liu F, Guo C, Yang W. Synthesis of size-controllable NiCo2S4 hollow nanospheres toward enhanced electrochemical performance. Energy Environ Mater. 2020;3(3):421.

    Article  CAS  Google Scholar 

  56. Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu CH, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson BI, Liu Q, Suenaga K, Liu G, Liu Z. A library of atomically thin metal chalcogenides. Nature. 2018;556(7701):355.

    Article  CAS  Google Scholar 

  57. Jiang J, Zhang Y, An Y, Wu L, Zhu Q, Dou H, Zhang X. Engineering ultrathin MoS2 nanosheets anchored on N-doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small Methods. 2019;3(7):1900081.

    Article  Google Scholar 

  58. Pham D, Baboo J, Song J, Kim S, Jo J, Mathew V, Alfaruqi M, Sambandam B, Kim J. Facile synthesis of pyrite (FeS2/C) nanoparticles as an electrode material for non-aqueous hybrid electrochemical capacitors. Nanoscale. 2018;10(13):5938.

    Article  CAS  Google Scholar 

  59. Man P, Zhang Q, Zhou Z, Chen M, Yang J, Wang Z, Wang Z, He B, Li Q, Gong W, Lu W, Yao Y, Wei L. Engineering MoS2 nanosheets on spindle-like α-Fe2O3 as high-performance core-shell pseudocapacitive anodes for fiber-shaped aqueous lithium-ion capacitors. Adv Funct Mater. 2020;30(36):2003967.

    Article  CAS  Google Scholar 

  60. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat Rev Mater. 2017;33:17033.

    Article  Google Scholar 

  61. Wu G, Li T, Wang Z, Li M, Wang B, Dong A. Molecular ligand-mediated assembly of multicomponent nanosheet superlattices for compact capacitive energy storage. Angew Chem Int Ed. 2020;59(46):2.

    Article  Google Scholar 

  62. Xiao Y, Zhou M, Liu J, Xu J, Fu L. Phase engineering of two-dimensional transition metal dichalcogenides. Sci China Mater. 2019;62(6):759.

    Article  CAS  Google Scholar 

  63. Jin H, Yu Y, Shen Q, Li P, Yu J, Chen W, Wang X, Kang Z, Zhu L, Zhao R, Zheng L, Song W, Cao C. Directly synthesis of 1T-phase MoS2 nanosheets with abundance sulfur-vacancies through (CH3)4N+ cations-intercalation for hydrogen evolution reaction. J Mater Chem A. 2021;9:13996.

    Article  CAS  Google Scholar 

  64. John C, Hyung-Seok K, Terri L, Chun-Han L, Bruce D, Sarah T. Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes. Adv Energy Mater. 2017;7(2):1601283.

    Article  Google Scholar 

  65. Yena K, Sujung K, Hong M, Ryung B. Tubular MoSSe/carbon nanotube electrodes for hybrid-ion capacitors. Electrochim Acta. 2021;374:137971.

    Article  Google Scholar 

  66. Li B, Hu H, Hu H, Huang C, Kong D, Li Y, Xue Q, Yan Z, Xing W, Gan X. Improving the performance of lithium ion capacitor by stabilizing anode working potential using CoSe2 nanoparticles embedded nitrogen-doped hard carbon microspheres. Electrochim Acta. 2021;370:137717.

    Article  CAS  Google Scholar 

  67. Zhang H, Jia Q, Kong L. Multi-dimensional hybrid heterostructure MoS2@C nanocomposite as a highly reversible anode for high-energy lithium-ion capacitors. Appl Surf Sci. 2020;531:147222.

    Article  CAS  Google Scholar 

  68. Wang C, Zhan C, Ren X, Lv R, Shen W, Kang F, Huang Z. MoS2/carbon composites prepared by ball-milling and pyrolysis for the high-rate and stable anode of lithium ion capacitors. RSC Adv. 2019;9(72):42316.

    Article  CAS  Google Scholar 

  69. Wang Y, Liu M, Cao J, Zhang H, Kong L, Trudgeon D, Li X, Walsh F. 3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors. ACS Appl Mater Interfaces. 2020;12(3):3709.

    Article  CAS  Google Scholar 

  70. Wang Y, Xin Z, Xiong P, Yin F, Xu Y, Wan B, Wang Q, Wang G, Ji P, Gou H. Insight into the intercalation mechanism of WSe2 onions toward metal ion capacitors: sodium rivals lithium. J Mater Chem A. 2018;6(43):21605.

    Article  CAS  Google Scholar 

  71. Wang R, Wang S, Jin D, Zhang Y, Cai Y, Ma J, Zhang L. Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors. Energy Storage Mater. 2017;9:195.

    Article  Google Scholar 

  72. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater. 2020;5:5.

    Article  Google Scholar 

  73. Yin F, Yang P, Yuan W, Semench A, Zhang C, Ji P, Wang G. Flexible MoSe2/MXene films for Li/Na-ion hybrid capacitors. J Power Sources. 2021;488:229452.

    Article  CAS  Google Scholar 

  74. Chao J, Yang L, Zhang H, Liu J, Hu R, Zhu M. Engineering layer structure of MoS2/polyaniline/graphene nanocomposites to achieve fast and reversible lithium storage for high energy density aqueous lithium-ion capacitors. J Power Sources. 2020;450:227680.

    Article  CAS  Google Scholar 

  75. Jia Q, Zhang H, Kong L. Nanostructure-modified in-situ synthesis of nitrogen-doped porous carbon microspheres (NPCM) loaded with FeTe2 nanocrystals and NPCM as superior anodes to construct high-performance lithium-ion capacitors. Electrochim Acta. 2020;337:135749.

    Article  CAS  Google Scholar 

  76. Zheng L, Xing T, Ouyang Y, Wang Y, Wang X. Core-shell structured MoS2@mesoporous hollow carbon spheres nanocomposite for supercapacitors applications with enhanced capacitance and energy density. Electrochim Acta. 2019;298:630.

    Article  CAS  Google Scholar 

  77. Zhan C, Liu W, Hu M, Liang Q, Yu X, Shen Y, Lv R, Kang F, Huang Z. High-performance sodium-ion hybrid capacitors based on an interlayerexpanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Mater. 2018;10:775.

    Article  CAS  Google Scholar 

  78. Chaturvedi A, Hu P, Aravindan V, Kloc C, Madhavi S. Unveiling two-dimensional TiS2 as an insertion host for the construction of high energy Li-ion capacitors. J Mater Chem A. 2017;5(19):9177.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51907193), the Key Research Program of Frontier Sciences, CAS (No. ZDBS-LY-JSC047), the Youth Innovation Promotion Association CAS (No. 2020145) and Dalian National Laboratory for Clean Energy Cooperation Fund, the CAS (No. DNL201915).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Zhang or Yan-Wei Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, X., Li, C. et al. Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Met. 41, 2971–2984 (2022). https://doi.org/10.1007/s12598-022-02028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02028-8

Keywords

Navigation