Skip to main content
Log in

Surface amorphization oxygen vacancy-rich porous Sn3Ox nanosheets for boosted photoelectrocatalytic bacterial inactivation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Antibiotic misuse has resulted in the emergence of superbugs, warranting new antibacterial methods. Surface amorphisation oxygen vacancy-rich porous Sn3Ox nanosheets in situ grown on Ni foam are successfully designed via a simple, one-step hydrothermal method, resulting in enhanced photoelectrochemical (PEC) bacterial inactivation. In this system, the porous structure enriches its surface with oxygen vacancies, which can extend the absorption spectrum into the near-infrared region, while oxygen vacancies can enhance the separation of electron–hole pairs. Most importantly, the sheet-like porous structure enhances surface active sites and increase the contact area between bacteria and electrodes. Therefore, the reactive oxygen species produced during the PEC process can directly act on the surface of bacteria and is 100% effectively against drug-resistant Gram-positive and Gram-negative bacteria in water within 30 min. This study acts as a foundation for the development of novel photoelectrocatalyst electrodes for efficient water purification.

Graphical Abstract

摘要

细菌感染每年困扰着数百万人,已成为一个全球严峻的公共卫生问题。由于抗生素的滥用,出现了具有多重耐药性的“超级细菌”。因此,迫切需要开发杀菌的新试剂和新手段。光电催化抗菌是将光催化和电催化协同联用的新型化学方法,是一种绿色灭菌技术,具有杀菌效果好、无二次污染、稳定性高和广谱抗菌等特点。本工作中,通过简单的一步水热法在泡沫镍上原位生长了表面非晶化富氧空位的多孔 Sn3Ox 纳米片,具有增强的光电化学灭菌性能。在该系统中,Sn3Ox 多孔结构在其表面富集了氧空位,可以将吸收光谱从可见光扩展到近红外区域,而且氧空位也可以增强电子-空穴对的分离。最重要的是,片状多孔结构增加了表面活性位点,与细菌与电极之间的接触面积,光电化学灭菌过程中产生的活性氧自由基可以直接作用于细菌表面。在30 min内,能够100%的消灭水中的耐药菌。该研究为开发用于高效水净化的新型光电催化系统提供了指导

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alharthi S, Alavi SE, Moyle PM, Ziora ZM. Sortase A (SrtA) inhibitors as an alternative treatment for superbug infections. Drug Discov Today. 2021;26(9):2164. https://doi.org/10.1016/j.drudis.2021.03.019.

    Article  CAS  Google Scholar 

  2. Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 2019;365(6549):1944. https://doi.org/10.1126/science.aaw1944.

    Article  CAS  Google Scholar 

  3. De Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050. PLoS Med. 2016;13(11):1002184. https://doi.org/10.1371/journal.pmed.1002184.

    Article  Google Scholar 

  4. Li XH, Fan H, Zi H, Hu HK, Li BH, Huang J, Luo PC, Zeng XT. Global and regional burden of bacterial antimicrobial resistance in urinary tract infections in 2019. J Clin Med. 2022;11(10):2817. https://doi.org/10.3390/jcm11102817.

    Article  CAS  Google Scholar 

  5. Luo XR, Zhang BP, Lu YH, Mei Y, Shen L. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure. J Hazard Mater. 2022;421(5): 126682. https://doi.org/10.1016/j.jhazmat.2021.126682.

    Article  CAS  Google Scholar 

  6. Issaka E, Amu-Darko JNO, Yakubu S, Fapohunda FO, Ali N, Bilal M. Advanced catalytic ozonation for degradation of pharmaceutical pollutants-a review. Chemosphere. 2022;289: 133208. https://doi.org/10.1016/j.chemosphere.2021.133208.

    Article  CAS  Google Scholar 

  7. Xing ZX, Cheng GJ, Yang H, Xue XX, Jiang PG. Mechanism and application of the ore with chlorination treatment: a review. Miner Eng. 2020;154:106404. https://doi.org/10.1016/j.mineng.2020.106404.

    Article  CAS  Google Scholar 

  8. Conejo AN, Birat JP, Dutta A. A review of the current environmental challenges of the steel industry and its value chain. J Environ Manage. 2020;259:109782. https://doi.org/10.1016/j.jenvman.2019.109782.

    Article  Google Scholar 

  9. Liu LY, Ji HG, Lu XF, Wang T, Zhi S, Pei F, Quan DL. Mitigation of greenhouse gases released from mining activities: a review. Int J Miner Metall Mater. 2021;28:513. https://doi.org/10.1007/s12613-020-2155-4.

    Article  CAS  Google Scholar 

  10. Tauseef SM, Abbasi T, Abbasi SA. Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev. 2013;19:704. https://doi.org/10.1016/j.rser.2012.11.056.

    Article  CAS  Google Scholar 

  11. Lv R, Liang YQ, Li ZY, Zhu SL, Cui ZD, Wu SL. Flower-like CuS/graphene oxide with photothermal and enhanced photocatalytic effect for rapid bacteria-killing using visible light. Rare Met. 2022;41(2):639. https://doi.org/10.1007/s12598-021-01759-4.

    Article  CAS  Google Scholar 

  12. Waso M, Reyneke B, Havenga B, Khan S, Khan W. Insights into Bdellovibrio spp. mechanisms of action and potential applications. World J Microbiol Biotechnol. 2021;37:85. https://doi.org/10.1007/s11274-021-03054-x.

    Article  CAS  Google Scholar 

  13. Wang LW, Gao FE, Wang AZ, Chen XY, Li H, Zhang X, Zheng H, Ji R, Li B, Yu X, Liu J, Gu ZJ, Chen FL, Chen CY. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv Mater. 2020;32(48):2005423. https://doi.org/10.1002/adma.202005423.

    Article  CAS  Google Scholar 

  14. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin J Rare Met. 2020;44(6):609. https://doi.org/10.13373/j.cnki.cjrm.XY18120018.

    Article  CAS  Google Scholar 

  15. Wang LW, Zhang X, Yu X, Gao FE, Shen ZY, Zhang XL, Ge SG, Liu J, Gu ZJ, Chen CY. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv Mater. 2019;31(33):1901965. https://doi.org/10.1002/adma.201901965.

    Article  CAS  Google Scholar 

  16. Ferraz NP, Nogueira AE, Marcos FCF, Machado VA, Rocca RR, Assaf EM, Asencios YJO. CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 2020;39(3):230. https://doi.org/10.1007/s12598-019-01282-7.

    Article  CAS  Google Scholar 

  17. Huang G, Xu ZH, Luo TT, Yan ZX, Zhang M. Fluorescent light enhanced graphitic carbon nitride/ceria with ultralow-content platinum catalyst for oxidative decomposition of formaldehyde at ambient temperature. Rare Met. 2021;40(11):3135. https://doi.org/10.1007/s12598-021-01756-7.

    Article  CAS  Google Scholar 

  18. Zhao Y, Liu J, Han M, Yang G, Ma L, Wang Y. Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Rare Met. 2021;40(2):499. https://doi.org/10.1007/s12598-020-01597-w.

    Article  CAS  Google Scholar 

  19. Yang RQ, Song GX, Wang LW, Yang ZW, Zhang J, Zhang X, Wang S, Ding LH, Ren N, Wang AZ, Yu X. Full solar-spectrum-driven antibacterial therapy over hierarchical Sn3O4/PDINH with enhanced photocatalytic activity. Small. 2021;17(39):2102744. https://doi.org/10.1002/smll.202102744.

    Article  CAS  Google Scholar 

  20. Zhou Z, Li B, Liu X, Li Z, Zhu S, Liang Y, Cui Z, Wu S. Recent progress in photocatalytic antibacterial. ACS Appl Bio Mater. 2021;4:3909. https://doi.org/10.1021/acsabm.0c01335.

    Article  CAS  Google Scholar 

  21. Li PP, Wu HX, Dong A. Ag/AgX nanostructures serving as antibacterial agents: achievements and challenges. Rare Met. 2022;41(2):519. https://doi.org/10.1007/s12598-021-01822-0.

    Article  CAS  Google Scholar 

  22. Zeng JY, Li ZM, Jiang H, Wang XM. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Mater Horiz. 2021;8:2964. https://doi.org/10.1039/D1MH00773D.

    Article  CAS  Google Scholar 

  23. Yu X, Jin X, Chen XY, Wang AZ, Zhang JM, Zhang J, Zhao ZH, Gao MM, Razzari L, Liu H. A microorganism bred TiO2/Au/TiO2 heterostructure for whispering gallery mode resonance assisted plasmonic photocatalysis. ACS Nano. 2020;14(10):13876. https://doi.org/10.1021/acsnano.0c06278.

    Article  CAS  Google Scholar 

  24. Li JF, Li ZY, Liu XM, Li CY, Zheng YF, Yeung KWK, Cui ZD, Liang YQ, Zhu SL, Hu WB, Qi YJ, Zhang TJ, Wang XB, Wu SL. Interfacial engineering of Bi2S3/Ti3C2Tx MXene based on work function for rapid photo-excited bacteria-killing. Nat Commun. 2021;12:1. https://doi.org/10.1038/s41467-021-21435-6.

    Article  CAS  Google Scholar 

  25. Guo H, Li J, Zou XR, Wang HS, Kang A, Zhou H, Li MJ, Zhao XY. Fabrication of GO-TiO2/(Ca, Y)F-2:Tm, Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis. Rare Met. 2022;41(2):650. https://doi.org/10.1007/s12598-021-01831-z.

    Article  CAS  Google Scholar 

  26. Li JY, Ma AQ, Li HF, Dong YH, Gao YQ. Tunable micromorphology and photocatalytic properties of monoclinic BiVO4 prepared by bionic template method. Chin J Rare Met. 2020;44(9):912. https://doi.org/10.13373/j.cnki.cjrm.xy19060008.

    Article  CAS  Google Scholar 

  27. Zhang P, Yu L, Lou XW. Construction of heterostructured Fe2O3-TiO2 microdumbbells for photoelectrochemical water oxidation. Angew Chem Int Ed. 2018;57:15076. https://doi.org/10.1002/anie.201808104.

    Article  CAS  Google Scholar 

  28. Ji YC, Yang RQ, Wang LW, Song GX, Wang AZ, Lv YW, Gao MM, Zhang J, Yu X. Visible light active and noble metal free Nb4N5/TiO2 nanobelt surface heterostructure for plasmonic enhanced solar water splitting. Chem Eng J. 2020;402: 126226. https://doi.org/10.1016/j.cej.2020.126226.

    Article  CAS  Google Scholar 

  29. Sun JY, Wen JH, Wu GZ, Zhang Z, Chen X, Wang GC, Liu MY. Harmonizing the electronic structures on BiOI with active oxygen vacancies toward facet-dependent antibacterial photodynamic therapy. Adv Func Mater. 2020;30(42):2004108. https://doi.org/10.1002/adfm.202004108.

    Article  CAS  Google Scholar 

  30. Vorobyova V, Vasyliev G, Uschapovskiy D, Lyudmyla K, Skiba M. Green synthesis, characterization of silver nanoparticals for biomedical application and environmental remediation. J Microbiol Methods. 2022;193:106384. https://doi.org/10.1016/j.mimet.2021.106384.

    Article  CAS  Google Scholar 

  31. Fu JN, Zhu WD, Liu XM, Liang CY, Zheng YF, Li ZY, Liang YQ, Zheng D, Zhu SL, Cui ZD, Wu SL. Self-activating anti-infection implant. Nature Commun. 2021;12:1. https://doi.org/10.1038/s41467-021-27217-4.

    Article  CAS  Google Scholar 

  32. Feng YJ, Wang Y, Wang KW, Ma JP, Duan YY, Liu J, Lu X, Zhang B, Wang GY, Zhou XY. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Met. 2022;41(2):385. https://doi.org/10.1007/s12598-021-01815-z.

    Article  CAS  Google Scholar 

  33. Yu X, Zhao ZH, Sun DH, Ren N, Ding LH, Yang RQ, Ji YC, Li LL, Liu H. TiO2/TiN core/shell nanobelts for efficient solar hydrogen generation. Chem Commun. 2018;54(47):6056. https://doi.org/10.1039/C8CC02651C.

    Article  CAS  Google Scholar 

  34. Wang WC, Zhu S, Cao YN, Tao Y, Li X, Pan DL, Phillips DL, Zhang DQ, Chen M, Li GS, Li HX. Edge-enriched ultrathin MoS2 embedded yolk-shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv Func Mater. 2019;29(36):1901958. https://doi.org/10.1002/adfm.201901958.

    Article  CAS  Google Scholar 

  35. Chen WJ, Li SY, Wang J, Sun K, Si YB. Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale. 2019;11:15783. https://doi.org/10.1039/C9NR04771A.

    Article  CAS  Google Scholar 

  36. Li XM, Wu DH, Hua T, Lan XQ, Han SP, Cheng JH, Du KS, Hu YY, Chen YC. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. Sci Total Environ. 2022;804: 150096. https://doi.org/10.1016/j.scitotenv.2021.150096.

    Article  CAS  Google Scholar 

  37. Soares SF, Fernandes T, Trindade T, Daniel-da-Silva AL. Recent advances on magnetic biosorbents and their applications for water treatment. Environ Chem Lett. 2020;18:151. https://doi.org/10.1007/s10311-019-00931-8.

    Article  CAS  Google Scholar 

  38. Wang RQ, Wang FK, Zhang X, Feng X, Zhao CD, Bu KJ, Zhang Z, Zhai TY, Huang FQ. Improved polarization in the Sr6Cd2Sb6O7Se10 oxyselenide through design of lateral sublattices for efficient photoelectric conversion. Angew Chem Int Ed. 2022;61(33):e202206816. https://doi.org/10.1002/ange.202206816.

    Article  CAS  Google Scholar 

  39. Zheng XL, Wu DX, Liu YH, Li J, Yang YJ, Huang W, Liu WF, Shen YJ, Tian XL. Photocatalytic reduction of water to hydrogen by CuPbSbS3 nanoflakes. Mater Today Energy. 2022;25: 100956. https://doi.org/10.1016/j.mtener.2022.100956.

    Article  CAS  Google Scholar 

  40. Liu ZR, Wang LW, Yu X, Zhang J, Yang RQ, Zhang XD, Ji YC, Wu MQ, Deng L, Li LL, Wang ZL. Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction. Adv Func Mater. 2019;29(41):1807279. https://doi.org/10.1002/adfm.201807279.

    Article  CAS  Google Scholar 

  41. Yang RQ, Ji YC, Wang LW, Song GX, Wang AZ, Ding LH, Ren N, Lv YW, Zhang J, Yu X. Crystalline Ni-doped Sn3O4 nanosheets for photocatalytic H2 production. ACS Appl Nano Mater. 2020;3:9268. https://doi.org/10.1021/acsanm.0c01886.

    Article  CAS  Google Scholar 

  42. Cho YU, Lee JY, Jeong UJ, Park S, Lim SL, Kim KY, Jang JW, Park JH, Kim HW, Shin H, Jeon H, Jung YM, Cho IJ, Yu KJ. Ultra-low cost, facile fabrication of transparent neural electrode array for electrocorticography with photoelectric artifact-free optogenetics. Adv Funct Mater. 2022;32(10):2105568. https://doi.org/10.1002/adfm.202105568.

    Article  CAS  Google Scholar 

  43. Zheng XL, Yang YJ, Liu YH, Deng PL, Li J, Liu WF, Rao P, Jia CM, Huang W, Du YL, Shen YJ, Tian XL. Fundamentals and photocatalytic hydrogen evolution applications of quaternary chalcogenide semiconductor: Cu2ZnSnS4. Rare Met. 2022;41(7):2153. https://doi.org/10.1007/s12598-021-01955-2.

    Article  CAS  Google Scholar 

  44. Wan ST, Li HT, Ma ZH, Zhang HC, Zheng YZ. 2D/2D heterostructured MoS2/PtSe2 promoting charge separation in FTO thin film for efficient and stable photocatalytic hydrogen evolution. Rare Met. 2022;41(5):1735. https://doi.org/10.1007/s12598-021-01954-3.

    Article  CAS  Google Scholar 

  45. Zhang M, Xuan XX, Wang WL, Ma CY, Lin ZQ. Anode photovoltage compensation-enabled synergistic CO2 photoelectrocatalytic reduction on a flower-like graphene-decorated Cu foam cathode. Adv Funct Mater. 2020;30(52):2005983. https://doi.org/10.1002/adfm.202005983.

    Article  CAS  Google Scholar 

  46. Yang RQ, Ji YC, Li Q, Zhao ZH, Zhang RT, Liang LL, Liu F, Chen YK, Han SW, Yu X, Liu H. Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance. Appl Catal B. 2019;256:117798. https://doi.org/10.1016/j.apcatb.2019.117798.

    Article  CAS  Google Scholar 

  47. Zhang G, Zhang ZH, Xia DH, Qu Y, Wang WQ. Solar driven self-sustainable photoelectrochemical bacteria inactivation in scale-up reactor utilizing larg-scale fabricable Ti/MoS2/MoOx photoanode. J Hazard Mater. 2020;392: 122292. https://doi.org/10.1016/j.jhazmat.2020.122292.

    Article  CAS  Google Scholar 

  48. Zhu LP, Lu H, Hao D, Wang LL, Wu ZH, Wang LJ, Li P, Ye JH. Three-dimensional lupinus-like TiO2 nanorod@Sn3O4 nanosheet hierarchical heterostructured arrays as photoanode for enhanced photoelectrochemical performance. ACS Appl Mater Interfaces. 2017;9:38537. https://doi.org/10.1021/acsami.7b11872.

    Article  CAS  Google Scholar 

  49. Balgude S, Sethi Y, Kale B, Amalnerkar D, Adhyapak P. Sn3O4 microballs as highly efficient photocatalyst for hydrogen generation and degradation of phenol under solar light irradiation. Mater Chem Phys. 2019;221:493. https://doi.org/10.1016/j.matchemphys.2018.08.032.

    Article  CAS  Google Scholar 

  50. Li CM, Yu SY, Dong HJ, Liu CB, Wu HJ, Che HN, Chen G. Z-scheme mesoporous photocatalyst constructed by modification of Sn3O4 nanoclusters on g-C3N4 nanosheets with improved photocatalytic performance and mechanism insight. Appl Catal B. 2018;238:284. https://doi.org/10.1016/j.apcatb.2018.07.049.

    Article  CAS  Google Scholar 

  51. Yang RQ, Ji YC, Zhang J, Zhang RT, Liu F, Chen YK, Liang LL, Han SW, Yu X, Liu H. Efficiently degradation of polyacrylamide pollution using a full spectrum Sn3O4 nanosheet/Ni foam heterostructure photoelectrocatalyst. Catal Today. 2019;335:520. https://doi.org/10.1016/j.cattod.2019.02.019.

    Article  CAS  Google Scholar 

  52. Yang RQ, Liang N, Chen XY, Wang LW, Song GX, Ji YC, Ren N, Lv YW, Zhang J, Yu X. Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance. Int J Miner Metall Mater. 2021;28(1):150. https://doi.org/10.1007/s12613-020-2131-z.

    Article  CAS  Google Scholar 

  53. Yu X, Zhao ZH, Zhang J, Guo WB, Qiu JC, Li DS, Li Z, Mou XN, Li LL, Li AX. Rutile nanorod/anatase nanowire junction array as both sensor and power supplier for high-performance, self-powered, wireless UV photodetector. Small. 2016;12:2759. https://doi.org/10.1002/smll.201503388.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51732007 and 52272212), the Natural Science Foundation of Shandong Province (No. ZR2022JQ20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Liu or Xin Yu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1133 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LW., Liu, L., You, Z. et al. Surface amorphization oxygen vacancy-rich porous Sn3Ox nanosheets for boosted photoelectrocatalytic bacterial inactivation. Rare Met. 42, 1508–1515 (2023). https://doi.org/10.1007/s12598-022-02208-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02208-6

Keywords

Navigation