Skip to main content

Advertisement

Log in

Sulfur–nitrogen co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Designing highly active and stable electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a challenge for energy conversion and storage technology. In this work, a S and N co-doped graphene supported cobalt–nickel sulfide composite catalyst (rGO@SN-CoNi2S4) was synthesized simply via a one-step hydrothermal method. The as-synthesized CoNi2S4 particles grew in a mosaic manner inside GO lamellae and were encapsulated with graphene. As a bifunctional catalyst, the rGO@SN-CoNi2S4 exhibits excellent electrocatalytic performance under alkaline conditions, which only required the overpotential of 142.6 mV (vs. RHE) and 310 mV (vs. RHE) to deliver a current density of 10 mA·cm−2 for HER and OER, respectively. The good hydrophilicity of the rGO@SN, the pure phase of bimetallic structure, and the chemical coupling/interaction between the CoNi2S4 and the rGO@SN are attributable to be the possible reasons responsible for the higher HER and OER catalytic activities. Additionally, the rGO@SN-CoNi2S4 also shows a great potential for serving as an excellent cathode and anode electrolyzer during the water splitting process.

Graphic abstract

摘要

设计高活性、高稳定性的氢析出和氧析出双功能电催化剂是能量转换和储存技术的一大挑战。本文通过一步水热法合成了硫-氮共掺杂石墨烯负载硫化钴镍复合催化剂(rGO@SN-CoNi2S4) 。所合成的CoNi2S4颗粒在石墨烯片层内以镶嵌方式生长, 并被石墨烯包裹。作为一种双功能催化剂, rGO@SN-CoNi2S4在碱性条件下表现出良好的电催化性能, 在氢析出和氧析出催化过程中分别仅需142.6 mV (vs. RHE)和310 mV (vs. RHE)的过电位即可达到10 mA·cm−2的电流密度。良好的亲水性, 纯相的双金属结构, 石墨烯与金属硫化物间的化学耦合/相互作用是rGO@SN-CoNi2S4表现出较好氢析出和氧析出催化性能的原因。此外, rGO@SN-CoNi2S4 作为阳极和阴极催化材料运用于全电解水催化中表现出较好的性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig.5

Similar content being viewed by others

References

  1. Luo X, Ji PX, Wang PY, Cheng RL, Chen D, Lin C, Zhang JN, He JW, Shi ZH, Li N, Xiao SQ, Mu SC. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv Energy Mater. 2020;10(17):1903891.

    Article  CAS  Google Scholar 

  2. Zou XX, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148.

    Article  CAS  Google Scholar 

  3. Tan Y, Yin YJ, Yin XH, Lan CH, Wang Y, Hu FL, Huang Q, Mi Y. A “superaerophobic” Se-doped CoS2 porous nanowires array for cost-saving hydrogen evolution. Catalysts. 2021;11(2):169.

    Article  CAS  Google Scholar 

  4. Wang J, Xu F, Jin HY, Chen YQ, Wang Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater. 2017;29(14):1605838.

    Article  Google Scholar 

  5. Li H, Du MS, Mleczko MJ, Koh AL, Nishi Y, Pop E, Bard AJ, Zheng XL. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J Am Chem Soc. 2016;138(15):5123.

    Article  CAS  Google Scholar 

  6. Wang ZM, Shen ZY, Li YM, Zuo JL. Preparation and photoelectrocatalytic performance of Ru loaded TiO2 nanotubes. Chin J Rare Met. 2020;44(6):609.

    Google Scholar 

  7. Wang ZY, Jiang SD, Duan CQ, Wang D, Luo SH, Liu YG. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogendoped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Met. 2020;39(12):1383.

    Article  CAS  Google Scholar 

  8. Shajaripour Jaberi SY, Ghaffarinejad A, Khajehsaeidi Z. The effect of annealing temperature, reaction time, and cobalt precursor on the structural properties and catalytic performance of CoS2 for hydrogen evolution reaction. Int J Hydrog Energy. 2021;46(5):3922.

    Article  CAS  Google Scholar 

  9. Amiinu IS, Pu Z, Liu XB, Owusu KA, Monestel HGR, Boakye FO, Zhang HN, Mu SC. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv Funct Mater. 2017;27(44):1702300.

    Article  Google Scholar 

  10. He DP, Tang HL, Kou ZK, Pan M, Sun XL, Zhang JJ, Mu SC. Engineered graphene materials: synthesis and applications for polymer electrolyte membrane fuel cells. Adv Mater. 2017;29(20):1601741.

    Article  Google Scholar 

  11. Gao XR, Li X, Yu Y, Kou ZK, Wang PY, Liu XM, Zhang J, He JQ, Mu SC, Wang J. Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core-shell nanosheet arrays enables efficient oxygen evolution. Nano Energy. 2021;85:105961.

    Article  CAS  Google Scholar 

  12. Mu XQ, Zhu Y, Gu XY, Dai SP, Mao QX, Bao LT, Li WX, Liu SL, Bao JC, Mu SC. Awakening the oxygen evolution activity of MoS2 by oxophilic-metal induced surface reorganization engineering. J Energy Chem. 2021;62:546.

    Article  Google Scholar 

  13. Kou ZK, Yu Y, Liu XM, Gao XR, Zheng LR, Zou HY, Pang YJ, Wang ZY, Pan ZH, He JQ, Pennycook SJ, Wang J. Potential-dependent phase transition and mo-enriched surface reconstruction of γ-CoOOH in a heterostructured Co-Mo2C precatalyst enable water oxidation. ACS Catal. 2020;10(7):4411.

    Article  CAS  Google Scholar 

  14. Chen Q, Fu YL, Jin JL, Zang WJ, Liu X, Zhang XY, Huang WZ, Kou ZK, Wang J, Zhou L, Mai LQ. In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution. J Energy Chem. 2021;55:10.

    Article  Google Scholar 

  15. Beka LG, Li X, Xia XJ, Liu WH. 3D flower-like CoNi2S4 grown on graphene decorated nickel foam as high performance supercapacitor. Diamond Relat Mater. 2017;73(9):169.

    Article  CAS  Google Scholar 

  16. Gao F, Xu BY, Wang QH, Cai FX, He SY, Zhang MS, Wang QX. Potentiostatic deposition of CoNi2S4 nanosheet arrays on nickel foam: effect of depostion time on the morphology and pseudocapacitive performance. J Mater Sci. 2016;51(23):10641.

    Article  CAS  Google Scholar 

  17. Wang Y, Wang DS, Li YD. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat. 2021;2(1):56.

    Article  Google Scholar 

  18. Wang DZ, Zhang XY, Du ZJ, Mo ZY, Wu YF, Yang Q, Zhang Y, Wu ZZ. CoNi2S4 nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction in alkaline media. Int J Hydrog Energy. 2017;42(5):3043.

    Article  CAS  Google Scholar 

  19. Wu ZX, Guo JP, Wang J, Liu R, Xiao WP, Xuan CJ, Xia KD, Wang DL. Hierarchically porous electrocatalyst with vertically aligned defect-rich CoMoS nanosheets for the hydrogen evolution reaction in an alkaline medium. ACS Appl Mater Inter. 2017;9(6):5288.

    Article  CAS  Google Scholar 

  20. Ge YC, Wu JJ, Xu XW, Ye MG, Shen JF. Facile synthesis of CoNi2S4 and CuCo2S4 with different morphologies as prominent catalysts for hydrogen evolution reaction. Int J Hydrog Energy. 2016;41(44):19847.

    Article  CAS  Google Scholar 

  21. He GJ, Qiao M, Li WY, Lu Y, Zhao TT, Zou RJ, Li B, Darr JA, Hu J, Titirici MM, Parkin IP. S, N-co-doped graphene-nickel cobalt sulfide aerogel: improved energy storage and electrocatalytic performance. Adv Sci. 2017;4(1):1600214.

    Article  Google Scholar 

  22. Liu JL, Zhu DD, Zheng Y, Vasileff A, Qiao SZ. Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions. ACS Catal. 2018;8(7):6707.

    Article  CAS  Google Scholar 

  23. Feng LL, Feng L, Huang JF, Cao LY, Kajiyoshi K. Ultrafine VN nanoparticles confined in Co@N-doped carbon nanotubes for boosted hydrogen evolution reaction. J Alloys Compd. 2021;853(5):157257.

    Article  CAS  Google Scholar 

  24. Jiao Y, Zheng Y, Davey K, Qiao SZ. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat Energy. 2016;1(10):16130.

    Article  CAS  Google Scholar 

  25. Han H, Park S, Jang D, Kim WB. N-doped carbon nanoweb-supported Ni/NiO heterostructure as hybrid catalysts for hydrogen evolution reaction in an alkaline phase. J Alloys Compd. 2021;853:157338.

    Article  CAS  Google Scholar 

  26. Li DJ, Maiti UN, Lim J, Choi DS, Lee WJ, Oh Y, Lee GY, Kim SO. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014;14(3):1228.

    Article  CAS  Google Scholar 

  27. Jing C, Guo XL, Xia LH, Chen YX, Wang X, Liu XY, Dong BQ, Dong F, Li SC, Zhang YX. Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability. Chem Eng J. 2020;379:122305.

    Article  CAS  Google Scholar 

  28. Liu Q, Jin JT, Zhang JY. NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Inter. 2013;5(11):5002.

    Article  CAS  Google Scholar 

  29. Tabunag JS, Guo YJ, Yu HZ. Interactions between hemin-binding DNA aptamers and hemin-graphene nanosheets: reduced afnity but unperturbed catalytic activity. J Anal Test. 2019;3:107.

    Article  Google Scholar 

  30. Chang HX, Wu HK. Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energ Environ Sci. 2013;6(12):3483.

    Article  CAS  Google Scholar 

  31. McCrory CCL, Jung S, Peters JC, Jaramillo TF. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc. 2013;135(45):16977.

    Article  CAS  Google Scholar 

  32. Ahmed ATA, Ansari AS, Pawar SM, Shong B, Kim H, Im H. Anti-corrosive FeO decorated CuCo2S4 as an efficient and durable electrocatalyst for hydrogen evolution reaction. Appl Surf Sci. 2021;539:148229.

    Article  CAS  Google Scholar 

  33. Hu W, Chen RQ, Xie W, Zou LL, Qin N, Bao DH. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Inter. 2014;6(21):19318.

    Article  CAS  Google Scholar 

  34. Wang P, Qi J, Li C, Li WP, Wang TH, Liang CH. Hierarchical CoNi2S4@NiMn-layered double hydroxide heterostructure nanoarrays on superhydrophilic carbon cloth for enhanced overall water splitting. Electrochim Acta. 2020;345(10):136247.

    Article  CAS  Google Scholar 

  35. Wang QH, Gao F, Xu BY, Cai FX, Zhan FP, Gao F, Wang QX. Zif-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor. Chem Eng J. 2017;327:387.

    Article  CAS  Google Scholar 

  36. Chen BH, Jiang ZQ, Zhou LS, Deng BL, Jiang ZJ, Huang JL, Liu ML. Electronic coupling induced high performance of N, S-codoped graphene supported CoS2 nanoparticles for catalytic reduction and evolution of oxygen. J Power Sources. 2018;389(4):178.

    Article  CAS  Google Scholar 

  37. Yang SB, Zhi LJ, Tang K, Feng XL, Maier J, Müllen K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater. 2012;22(17):3634.

    Article  CAS  Google Scholar 

  38. Li MJ, Liu CM, Zhao H, An HJ, Cao HB, Zhang Y, Fan ZJ. Tuning sulfur doping in graphene for highly sensitive dopamine biosensors. Carbon. 2015;86(1):197.

    Article  CAS  Google Scholar 

  39. Lin TW, Liu CJ, Dai CS. Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl Catal B-Environ. 2014;154–155(2):213.

    Article  Google Scholar 

  40. Xu R, Wu R, Shi YM, Zhang JF, Zhang B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy. 2016;24:103.

    Article  CAS  Google Scholar 

  41. Liu DN, Lu Q, Luo YL, Sun XP, Asiri AM. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale. 2015;7(37):15122.

    Article  CAS  Google Scholar 

  42. Anjum MAR, Lee JS. Sulfur and nitrogen dual-doped molybdenum phosphide nanocrystallites as an active and stable hydrogen evolution reaction electrocatalyst in acidic and alkaline media. ACS Catal. 2017;7(4):3030.

    Article  CAS  Google Scholar 

  43. Zhang Y, Gao L, Hensen EJM, Hofmann JP. Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes. ACS Energy Lett. 2018;3(6):1360.

    Article  CAS  Google Scholar 

  44. Zhang L, Ren X, Guo XD, Liu ZA, Asiri AM, Li BH, Chen L, Sun XP. Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P–CeO2. Inorg Chem. 2017;57(2):548.

    Article  Google Scholar 

  45. Wang TT, Wu LQ, Xu XB, Sun Y, Wang YQ, Zhong W, Du YW. An efficient Co3S4/CoP hybrid catalyst for electrocatalytic hydrogen evolution. Sci Rep. 2017;7(1):11891.

    Article  Google Scholar 

  46. Xing DN, Zhou P, Liu YY, Wang ZY, Wang P, Zheng ZK, Dai Y, Whangbo MH, Huang BB. Atomically dispersed cobalt-based species anchored on polythiophene as an efficient electrocatalyst for oxygen evolution reaction. Appl Surf Sci. 2021;545:148943.

    Article  CAS  Google Scholar 

  47. Bhatti AL, Aftab U, Tahira A, Abro MI, Mari RH, Samoon MK, Aghem MH, Shaikh NM, Mugheri AQ, Ibupoto ZH. An efficient and functional Fe3O4/Co3O4 composite for oxygen evolution reaction. J Nanosci Nanotechno. 2021;21(4):2675.

    Article  CAS  Google Scholar 

  48. Zhang WJ, Zong LB, Fan KC, Cui LX, Zhang Q, Zhao J, Wang L, Feng SH. Enabling highly efficient electrocatalytic oxygen reduction and evolution reaction by established strong MnO/Co-support interaction. J Alloys Compd. 2021;874:159965.

    Article  CAS  Google Scholar 

  49. Ahn CH, Deshpande NG, Lee HS, Cho HK. Atomically controllable in-situ electrochemical treatment of metal-organic-framework-derived cobalt-embedded carbon composites for highly efficient electrocatalytic oxygen evolution. Appl Surf Sci. 2021;554:149651.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2020A1515110473 and 2019A1515110528).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Chu Cheng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 634 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, BL., Guo, LP., Lu, Y. et al. Sulfur–nitrogen co-doped graphene supported cobalt–nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions. Rare Met. 41, 911–920 (2022). https://doi.org/10.1007/s12598-021-01828-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01828-8

Keywords

Navigation