Skip to main content
Log in

Potentiostatic deposition of CoNi2S4 nanosheet arrays on nickel foam: effect of depostion time on the morphology and pseudocapacitive performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The bimetallic sulfide of CoNi2S4 nanosheet arrays have been successfully prepared via a facile one-step potentiostatic deposition on nickel foam using Co(NO3)2, NiCl2, and thiourea as the raw materials. The effect of deposition time on the morphology, structure, and electrochemical performance of the products is carefully investigated. The results show that when the potentiostatic deposition time is set as 10 min, the most uniform nanosheet arrays with the optimal supercapacitive performance are achieved on the nickel foam. The specific capacitance of material obtained under this condition is determined to be 1932 F g−1 at 2 A g−1 and 1640 F g−1 at 20 A g−1, respectively. The material retains 89.2 % of its original specific capacitance after 1000 charge–discharge cycles at a current density of 10 A g−1, demonstrating that the CoNi2S4 nanosheet arrays have an outstanding long-term cycling stability. These impressive performances can be ascribed to the unique architecture and properties of the deposited product, such as high interfacial contact area, rich redox activity, large pore size, and excellent conductivity. This work provides more supporting data to obtain high-performance supercapacitive bimetallic sulfide material by electrodeposition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  Google Scholar 

  2. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin. Science 343:1210–1211

    Article  Google Scholar 

  3. Moyseowicz A, Śliwak A, Gryglewicz G (2016) Influence of structural and textural parameters of carbon nanofibers on their capacitive behavior. J Mater Sci 51:3431–3439. doi:10.1007/s10853-015-9660-2

    Article  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  5. You B, Wang L, Yao L, Yang J (2013) Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun 49:5016–5018

    Article  Google Scholar 

  6. Chen H, Zhou S, Wu L (2014) Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Interfaces 6:8621–8630

    Article  Google Scholar 

  7. Fam DWH, Azoubel S, Liu L, Huang J, Mandler D, Magdassi S, Tok AIY (2015) Novel felt pseudocapacitor based on carbon nanotube/metal oxides. J Mater Sci 50:6578–6585. doi:10.1007/s10853-015-9199-2

    Article  Google Scholar 

  8. Lai C, Luand MY, Chen L (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22:19–30

    Article  Google Scholar 

  9. Shen S, Wang Q (2013) Rational tuning the optical properties of metal sulfide nanocrystals and their applications. Chem Mater 25:1166–1178

    Article  Google Scholar 

  10. Rui X, Tang H, Yan Q (2014) Nanostructured metal sulfides for energy storage. Nanoscale 6:9889–9924

    Article  Google Scholar 

  11. Xing Z, Chu Q, Ren X, Tian J, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochem Commun 32:9–13

    Article  Google Scholar 

  12. Huang K, Zhang J, Xing K (2014) One-step synthesis of layered CuS/multi-walled carbon nanotube nanocomposites for supercapacitor electrode material with ultrahigh specific capacitance. Electrochim Acta 149:28–33

    Article  Google Scholar 

  13. Wei C, Cheng C, Zhao J, Wang Y, Cheng Y, Xu Y, Du W, Pang H (2015) NiS hollow spheres for high-performance supercapacitors and non-enzymatic glucose sensors. Chem Asian J 10:679–686

    Article  Google Scholar 

  14. Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan Q (2014) Hollow spheres: MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv Funct Mater 24:2155–2162

    Article  Google Scholar 

  15. Javed MS, Dai S, Wang M, Guo D, Chen L, Wang X, Hua C, Xia Y (2015) High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J Power Sources 285:63–69

    Article  Google Scholar 

  16. Liu Q, Jin J, Zhang J (2013) NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Appl Mater Interfaces 5:5002–5008

    Article  Google Scholar 

  17. Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

    Article  Google Scholar 

  18. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

    Article  Google Scholar 

  19. Yu L, Zhang L, Wu H, Lou X (2014) Formation of Ni(x)Co(3-x)S4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed 53:3711–3714

    Article  Google Scholar 

  20. Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637

    Article  Google Scholar 

  21. Zhu Y, Ji X, Wu Z, Song W, Hou H, Wu Z, He X, Chen Q, Banks CE (2014) Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties. J Power Sources 267:888–900

    Article  Google Scholar 

  22. Gao Z, Yang W, Wang J, Song N, Li X (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  Google Scholar 

  23. Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590

    Article  Google Scholar 

  24. Cai D, Wang D, Wang C, Liu B, Wang L, Liu Y, Li Q, Wang T (2015) Construction of desirable NiCo2S4 nanotube arrays on nickel foam substrate for pseudocapacitors with enhanced performance. Electrochim Acta 151:35–41

    Article  Google Scholar 

  25. Gao Y, Mi L, Wei W, Cui S, Zheng Z, Hou H, Chen W (2015) Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl Mater Interfaces 7:4311–4319

    Article  Google Scholar 

  26. Jagadale AD, Kumbhar VS, Lokhande CD (2013) Supercapacitive activities of potentiodynamically deposited nanoflakes of cobalt oxide (Co3O4) thin film electrode. J Colloid Interface Sci 406:225–230

    Article  Google Scholar 

  27. Li Y, Ye K, Cheng K, Yin J, Cao D, Wang D (2015) Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors. J Power Sources 274:943–950

    Article  Google Scholar 

  28. Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 9:9531–9541

    Article  Google Scholar 

  29. Nguyen VH, Lamiel C, Shim JJ (2015) Hierarchical mesoporous graphene@Ni–Co–S arrays on nickel foam for high-performance supercapacitors. Electrochim Acta 161:351–357

    Article  Google Scholar 

  30. Xu Y, Huang X, Lin Z, Zhong X, Huang Y, Duan X (2013) One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res 6:65–76

    Article  Google Scholar 

  31. Janas J, Machej T, Gurgul J, Socha RP, Che M, Dzwigaj S (2007) Effect of Co content on the catalytic activity of CoSiBEA zeolite in the selective catalytic reduction of NO with ethanol: nature of the cobalt specie. Appl Catal B 75:239–248

    Article  Google Scholar 

  32. Du W, Wang Z, Zhu Z, Hu S, Zhu X, Shi Y, Pang H, Qian X (2014) Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes. J Mater Chem A 2:9613–9619

    Article  Google Scholar 

  33. Prabu M, Ketpang K, Shanmugam S (2014) Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale 6:3173–3181

    Article  Google Scholar 

  34. Wei W, Mi L, Gao Y, Zheng Z, Chen W, Guan X (2014) Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. Chem Mater 26:3418–3426

    Article  Google Scholar 

  35. Lee CW, Seo SD, Park HK, Park S, Song H, Kim DW, Hong K (2015) High-areal-capacity lithium storage of the Kirkendall effect-driven hollow hierarchical NiS x nanoarchitecture. Nanoscale 7:2790–2796

    Article  Google Scholar 

  36. Min S, Zhao C, Zhang Z, Chen G, Qian X, Guo Z (2015) Synthesis of Ni(OH)2-RGO pseudocomposite on nickel foam for supercapacitors with superior performance. J Mater Chem A 3:3641–3650

    Article  Google Scholar 

  37. Wei W, Mi L, Cui S, Wang B, Chen W (2015) Carambola-like Ni@Ni1.5Co1.5S2 for use in high-performance supercapacitor devices design. ACS Sustain Chem Eng 3:2777–2785

    Article  Google Scholar 

  38. Pu J, Cui F, Chu S, Wang T, Sheng E, Wang Z (2014) Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. ACS Sustain Chem Eng 2:809–815

    Article  Google Scholar 

  39. Fan H, Quan L, Yuan M, Zhu S, Wang K, Zhong Y, Chang L, Shao H, Wang J, Zhang J, Cao C (2016) Thin Co3O4 nanosheet array on 3D porous graphene/nickel foam as a binder-free electrode for high-performance supercapacitors. Electrochim Acta 188:222–229

    Article  Google Scholar 

  40. Yuan CZ, Yang L, Hou LR, Shen LF, Zhang XG, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5:7883–7887

    Article  Google Scholar 

  41. Kurra N, Xia C, Hedhili MN, Alshareef HN (2015) Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chem Commun 51:10494–10497

    Article  Google Scholar 

  42. Rakhi RB, Chen W, Cha D, Alshareef HN (2011) High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes. J Mater Chem 21:16197–16204

    Article  Google Scholar 

  43. Gao H, Xiao F, Ching C, Duan H (2012) Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl Mater Interfaces 4:7020–7026

    Article  Google Scholar 

  44. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (No. 21275127), Education-Science Research Project for Young and Middle-aged Teachers of Fujian (No. JA15305), and the Natural Science Foundation of Fujian Province (No. 2013J01062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Xu, B., Wang, Q. et al. Potentiostatic deposition of CoNi2S4 nanosheet arrays on nickel foam: effect of depostion time on the morphology and pseudocapacitive performance. J Mater Sci 51, 10641–10651 (2016). https://doi.org/10.1007/s10853-016-0286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0286-9

Keywords

Navigation