Skip to main content
Log in

Microstructures and bio-corrosion resistances of as-extruded Mg–Ca alloys with ultra-fine grain size

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electrochemical and immersion tests were conducted to characterize the bio-corrosion resistance of as-extruded Mg–Ca binary alloys with submicron grain size. The microstructures were further characterized by optical microscopy (OM), scanning electronic microscopy and transmission electron microscope (TEM). The grain size was estimated from OM and TEM images. Three samples and at least 20 images were used to evaluate the average grain size. Macro-textures of the as-extruded samples were measured via X-ray diffraction. The Mg–2Ca alloy extruded at 300 °C (2Ca-300) exhibits the lowest current density of 1.683 mA·cm−2 and corrosion rate of 22.14 g·m−2·day−1 in simulated body fluid, which is comparable with that of pure Mg. The Ca addition can reduce grain size of as-extruded Mg alloy and decrease the corrosion rate. The formed Mg2Ca phases would accelerate the local galvanic corrosion and protect the α-Mg matrix simultaneously due to the lower electrode potential. The lower defect density, finer grain size and weaker basal texture intensity contribute to the excellent bi-corrosion resistance of the 2Ca-300 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kiani M, Gandikota I, Rais-Rohani M, Motoyama K. Design of lightweight magnesium car body structure under crash and vibration constraints. J Magnes Alloys. 2014;2(2):99.

    Article  CAS  Google Scholar 

  2. Luo AA. Magnesium casting technology for structural applications. J Magnes Alloys. 2013;1(1):2.

    Article  CAS  Google Scholar 

  3. Adekanmbi I, Mosher CZ, Lu HH, Riehle M, Kubba H, Elizabeth Tanner K. Mechanical behaviour of biodegradable AZ31 magnesium alloy after long term in vitro degradation. Mater Sci Eng C. 2017;77:1135.

    Article  CAS  Google Scholar 

  4. Bi G, Li Y, Zang S, Zhang J, Ma Y, Hao Y. Microstructure, mechanical and corrosion properties of Mg–2Dy–xZn (x = 0, 0.1, 0.5 and 1 at%) alloys. J Magnes Alloys. 2014;2(1):64.

    Article  CAS  Google Scholar 

  5. Cho DH, Lee BW, Park JY, Cho KM, Park IM. Effect of Mn addition on corrosion properties of biodegradable Mg–4Zn–0.5 Ca–xMn alloys. J Alloys Compd. 2017;695:1166.

    Article  CAS  Google Scholar 

  6. Cui LY, Zeng RC, Guan SK, Qi WC, Zhang F, Li SQ, Han EH. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg–Ca alloys: the influence of porosity. J Alloys Compd. 2017;695:2464.

    Article  CAS  Google Scholar 

  7. Seong JW, Kim WJ. Development of biodegradable Mg–Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg2Ca phase by high-ratio differential speed rolling. Acta Biomater. 2015;11:531.

    Article  CAS  Google Scholar 

  8. Wan DQ. Phase selection and performance of Mg–Cu–Y amorphous composite with different Mg/Cu ratios. Rare Met. 2014;33(1):91.

    Article  CAS  Google Scholar 

  9. Kumar P, Mondal AK, Chowdhury SG, Krishna G, Ray AK. Influence of additions of Sb and/or Sr on microstructure and tensile creep behaviour of squeeze-cast AZ91D Mg alloy. Mater Sci Eng A. 2017;683:37.

    Article  CAS  Google Scholar 

  10. Jin W, Wang G, Lin Z, Feng HQ, Li W, Peng X, Qasim AM, Chu PK. Corrosion resistance and cytocompatibility of tantalum-surface-functionalized biomedical ZK60 Mg alloy. Corros Sci. 2017;114:45.

    Article  CAS  Google Scholar 

  11. Li L, Zhang M, Li Y, Zhao J, Qin L, Lai YX. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review. Regen Biomater. 2017;4(2):129.

    Article  CAS  Google Scholar 

  12. Li Z, Chen M, Li W, Zheng HR, You C, Liu DB, Jin F. The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg–Zn–Zr–Sr alloy. J Alloys Compd. 2017;702:290.

    Article  CAS  Google Scholar 

  13. Tang H, Han Y, Wu T, Tao W, Jian X, Wu YF, Xu FJ. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation. Appl Surf Sci. 2017;400:391.

    Article  CAS  Google Scholar 

  14. Yang L, Ma L, Huang Y, Feyerabend F, Blawert C, Höche D, Willumeit-Römer R, Zhang E, Kainer KU, Hort N. Influence of Dy in solid solution on the degradation behavior of binary Mg–Dy alloys in cell culture medium. Mater Sci Eng, C. 2017;75:1351.

    Article  CAS  Google Scholar 

  15. Zhao C, Pan F, Zhang L, Pan HC, Song K, Tang AT. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg–Sr alloys. Mater Sci Eng C. 2017;70:1081.

    Article  CAS  Google Scholar 

  16. Nene SS, Kashyap BP, Prabhu N, Estrin Y, Al-Samman T. Biocorrosion and biodegradation behavior of ultralight Mg–4Li–1Ca (LC41) alloy in simulated body fluid for degradable implant applications. J Mater Sci. 2015;50(8):3041.

    Article  CAS  Google Scholar 

  17. Li YC, Wen C, Mushahary D, Sravanthi R, Harishankar N, Pande G, Hodgson P. Mg–Zr–Sr alloys as biodegradable implant materials. Acta Biomater. 2012;8(8):3177.

    Article  CAS  Google Scholar 

  18. Zeng RC, Qi WC, Cui HZ, Zhang F, Li SQ, Han EH. In vitro corrosion of as-extruded Mg–Ca alloys—the influence of Ca concentration. Corros Sci. 2015;96:23.

    Article  CAS  Google Scholar 

  19. Jeong YS, Kim WJ. Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corros Sci. 2014;82:392.

    Article  CAS  Google Scholar 

  20. Leng Z, Zhang JH, Yin TT, Zhang L, Guo XY, Peng QM, Zhang ML, Wu RZ. Influence of biocorrosion on microstructure and mechanical properties of deformed Mg–Y–Er–Zn biomaterial containing 18R-LPSO phase. J Mech Behav Biomed Mater. 2013;28:332.

    Article  CAS  Google Scholar 

  21. Yang QS, Jiang B, Li X, Dong HW, Liu WJ, Pan FS. Microstructure and mechanical behavior of the Mg–Mn–Ce magnesium alloy sheets. J Magnes Alloys. 2014;2(1):8.

    Article  CAS  Google Scholar 

  22. Kirkland NT, Birbilis N, Walker J, Woodfield T, Dias GJ, Staiger MP. In-vitro dissolution of magnesium–calcium binary alloys: clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. J Biomed Mater Res B Appl Biomater. 2010;95(1):91.

    Article  Google Scholar 

  23. Xu HB, Sun HB, Yang H, Chi LX, Chen J. Microstructure and properties of joint for stirring brazing of dissimilar Al/Mg alloy during heating processes. Rare Met. 2015;34(4):245.

    Article  CAS  Google Scholar 

  24. Kim WJ, Jeong HG, Jeong HT. Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scr Mater. 2009;61(11):1040.

    Article  CAS  Google Scholar 

  25. Salami B, Afshar A, Mazaheri A. The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid. J Magnes Alloys. 2014;2(1):72.

    Article  CAS  Google Scholar 

  26. Zhao CY, Pan FS, Zhao S, Pan HC, Song K, Tang AT. Preparation and characterization of as-extruded Mg–Sn alloys for orthopedic applications. Mater Des. 2015;70:60.

    Article  CAS  Google Scholar 

  27. Wan DQ, Luo X, Liu YJ, Yu T. Quasicrystal dissolution and performance of isothermally heat-treated Mg–Zn–Y alloy. Rare Met. 2015;34(7):452.

    Article  CAS  Google Scholar 

  28. Xin RL, Luo YM, Zuo AL, Gao JC, Liu Q. Texture effect on corrosion behavior of AZ31 Mg alloy in simulated physiological environment. Mater Lett. 2012;72:1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 150046) and the National Natural Science Foundation of China (Nos. 51525101, 51501032 and 51371046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ping Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, ZR., Zhang, C., Pan, HC. et al. Microstructures and bio-corrosion resistances of as-extruded Mg–Ca alloys with ultra-fine grain size. Rare Met. 42, 680–687 (2023). https://doi.org/10.1007/s12598-017-0945-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0945-2

Keywords

Navigation