Skip to main content
Log in

Phase selection and performance of Mg–Cu–Y amorphous composite with different Mg/Cu ratios

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this article, Mg–Cu–Y alloys with two different Mg/Cu ratios (in at%) were prepared using a water-cooled copper mold. Scanning electron microscopy and X-ray diffraction were applied to analyze the microstructure and phase composition. Moreover, corrosion resistance and wear resistance were studied systematically. The results show that both Mg65Cu25Y10 and Mg60Cu30Y10 alloys could form a composition of crystalline and amorphous phases. Although the microstructure of Mg65Cu25Y10 consists of an amorphous phase and α-Mg, Mg2Cu, and Cu2Y crystalline phases, the microstructure of Mg60Cu30Y10 alloy mainly consists of the amorphous phase and α-Mg, Mg2Cu. With reducing Mg/Cu ratio, the alloys have better corrosion resistance and wear resistance. The mechanism has also been discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. ASM International. ASM specialty handbook. In: Avedesian MM, Baker H, editors. Magnesium and Magnesium Alloys. Materials Park, Ohio: The Materials Information Society; 1999. 218.

  2. Aghion E, Bronfin B, Eliezer D. The role of the magnesium industry in protecting the environment. J Mater Process Technol. 2001;117(3):381.

    Article  Google Scholar 

  3. Zhang K, Ma ML, Li XG, Li YJ, Liang LC, Bing MF. Hot deformation behavior of Mg-7.22Gd-4.84Y-1.26Nd-0.58Zr magnesium alloy. Rare Met. 2011;30(1):87.

    Article  Google Scholar 

  4. Li DQ, Wang QD, Ding WJ. Effects of Ho on the microstructure and mechanical properties of Mg–Zn–Ho–Zr magnesium alloys. Rare Met. 2011;30(2):131.

    Article  Google Scholar 

  5. Wan DQ, Yang GC, Zhu M, Zhou YH. Growth morphology and evolution of icosahedral quasicrystal in Mg–Zn–Y ternary alloys. Rare Met Mater Eng. 2006;35(9):1404.

    Google Scholar 

  6. Ma H, Xu J, Ma E. Mg-based bulk metallic glass composites with plasticity and high strength. Appl Phys Lett. 2003;83(14):2372.

    Article  Google Scholar 

  7. Hui X, Dong W, Chen GL, Yao KF. Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites. Acta Metall. 2007;55(3):907.

    Google Scholar 

  8. Li ZG, Hui X, Zhang CM, Chen GL. Formation of Mg–Cu–Zn–Y bulk metallic glasses with compressive strength over gigapascal. J Alloys Compd. 2008;454(1–2):168.

    Article  Google Scholar 

  9. Takagi M, Kawamura Y, Saka H, Imura T. Effect of preparation technique and atmosphere on the mechanical properties of bulk amorphous alloy compacts. Mater Sci Eng A. 1991;133(15):30l.

    Google Scholar 

  10. Huang K, Chen G, Zhao YT, Wang GL, Shao Y. Crystallization microstructure of Mg65Cu25Y10 bulk amorphous alloy. Trans Nonferrous Met Soc China. 2012;22(4):831.

    Article  Google Scholar 

  11. Inoue A, Kato A, Zhang T, Kim SG, Masumoto T. Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans. 1991;32(7):609.

    Google Scholar 

  12. Inoue A, Takeuchi A. Recent progress in bulk glassy alloys. Mater Trans. 2002;43(8):1892.

    Article  Google Scholar 

  13. Ma H, Shi LL, Xu J, Ma E. Chill-cast in situ composites in the pseudo-ternary Mg–(Cu, Ni)–Y glass-forming system: microstructure and compressive properties. J Mater Res. 2007;22(2):314.

    Article  Google Scholar 

  14. Mezbahul-Islam M, Kevorkov D, Medraj M. The equilibrium phase diagram of the magnesium–copper–yttrium system. J Chem Thermodyn. 2008;40(3):1064.

    Article  Google Scholar 

  15. Inoue A. Bulk amorphous and nanocrystalline alloys with high functional properties. Mater Sci Eng, A. 2011;304–306(31):1.

    Google Scholar 

  16. Yao HB, Li Y, Wee ATS. Corrosion behavior of melt-spun Mg65Ni20Nd15 and Mg65Cu25Y10 metallic glasses. Electrochim Acta. 2003;48(18):2641.

    Article  Google Scholar 

  17. Gebert A, Wolff U, John A, Eckert J. Corrosion behaviour of Mg65Y10Cu25 metallic glass. Scripta Mater. 2000;43(3):279.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Jiangxi Province (No. 20114BAB216015), the Foundation of Jiangxi Educational Committee (No. GJJ12320), and the National Natural Science Foundation of China (No. 50671083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-Qing Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, DQ. Phase selection and performance of Mg–Cu–Y amorphous composite with different Mg/Cu ratios. Rare Met. 33, 91–94 (2014). https://doi.org/10.1007/s12598-013-0062-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0062-9

Keywords

Navigation