Skip to main content
Log in

Synthesis and Corrosion Performance Evaluation of Nanostructured Duplex Stainless Steel Alloys Prepared by MA and SPS

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanostructured duplex stainless steel (DSS) was prepared using mechanical alloying (MA) and spark plasma sintering (SPS). The ball milling was performed under nitrogen atmosphere. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to identify the phases and carry out morphological investigations, respectively. XRD spectra revealed that ferrite phase formation dominated during the initial stages and austenite phase emerged after several hours of ball milling. Lattice parameter calculations showed a decrease in lattice parameter up to 5 h and later increased at 10 h of milling. A decrease in crystallite size was observed up to 10 h of milling. SPS was performed in vacuum at an optimized temp. of 1000 °C for a fixed holding time of 10 min, heating rate of 100 °C/min, cooling rate of 200 °C/min and under an applied pressure of 50 MPa. The electrochemical performance of DSS alloys was examined using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that alloy Fe-18Cr-3Mn-1Mo-1Si-0, 22N-5Ni (wt.%), has the highest corrosion resistance among the designed alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Karahan, T.; Emre, H.E.; Tümer, M.; Kacar, R.: Strengthening of AISI 2205 duplex stainless steel by strain ageing. Mater. Des. 1(55), 250–256 (2014)

    Article  Google Scholar 

  2. Dobrzanski, L.A.; Brytan, Z.; Actis Grande, M.; Rosso, M.: Properties of duplex stainless steels made by powder metallurgy. Arch. Mater. Sci. Eng. 28, 217–223 (2007)

    Google Scholar 

  3. Wang, Y.Q.; Yang, B.; Han, J.; Dong, F.; Wang, Y.L.: Localized corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plant. Procedia Eng. 36, 88–95 (2012)

    Article  Google Scholar 

  4. Herenu, S.; Alvarez-Armas, I.; Armas, A.F.: The influence of dynamic strain ageing on the low cycle fatigue of duplex stainless steel. Scr. Mater. 45, 739–745 (2001)

    Article  Google Scholar 

  5. Miyamoto, H.; Mirnaki, T.; Hashimoto, S.: Super plastic deformation of microspecimens of duplex stainless steel. Mater. Sci. Eng. A 319, 779–783 (2001)

    Article  Google Scholar 

  6. Schofield, M.J.; Bradsha, R.; Cottis, R.A.: Stress corrosion cracking of duplex stainless steel weldments in sour conditions. Mater. Perform. 35, 65–70 (2009)

    Google Scholar 

  7. Mahale, R.S.; Shamanth, V.; Sharath, P.C.; Shashanka, R.; Hemanth, K.: A review on spark plasma sintering of duplex stainless steels. Mater. Today Proceed. 1(45), 138–144 (2021)

    Article  Google Scholar 

  8. He, H.; Liu, Z.; Xie, Y.; Zhang, L.; Yi, X.; Ao, Fu.; Zhao, W.: A stochastic study of the effect of the phase ratio on the corrosion resistance of duplex stainless steel. Mater. Lett. 360, 136003 (2024)

    Article  Google Scholar 

  9. Kurzydłowski, K.J.: Microstructural refinement and properties of metals processed by severe plastic deformation. Bull. Pol. Acad. Sci. Tech. Sci. 52, 275 (2004)

    Google Scholar 

  10. Gleiter, H.: Nanocrystalline Materials. Prog. Mater. Sci. 33, 223–315 (1989)

    Article  Google Scholar 

  11. Gupta, R.K.; Birbilis, N.: The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review. Corr. Sci. 92, 1–15 (2015)

    Article  Google Scholar 

  12. Gupta, R.K.; Raman, R.K.S.; Koch, C.C.; Murty, B.S.: Effect of nanocrystalline structure on the corrosion of a Fe20Cr alloy. Int. J. Electrochem. Sci. 8, 6791–6806 (2013)

    Article  Google Scholar 

  13. Dobrzanski, L.A.; Brytan, Z.; Actis Grande, M.; Rosso, M.: Corrosion behavior of vacuum sintered duplex stainless steels. J. Mater. Process. Technol. 191, 161–164 (2007)

    Article  Google Scholar 

  14. Suryanarayana, C.; Ivanov, E.: Advances in Powder Metallurgy: 3. Elsevier Science, Mechanochemical Synthesis of Nanocrystalline Metal Powders (2013)

    Google Scholar 

  15. Yang, Z.; Li, Y.; Zhigang, Xu.; Sun, Y.; Wang, P.; Cui, L.; Wang, T.: Characterization of σ-phase precipitation and effect on performance in duplex stainless steel S31803. Eng. Fail. Anal. 157, 107836 (2024)

    Article  Google Scholar 

  16. Kurata, Y.; Futakawa, M.; Saito, S.: Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb–Bi at 450 and 550 °C. J. Nucl. Mater. 343, 333–340 (2005)

    Article  Google Scholar 

  17. Ozturk, B.; Topcu, A.; Cora, O.N.: Influence of processing parameters on the porosity, thermal expansion, and oxidation behavior of consolidated Fe22Cr stainless steel powder. Powder Technol. 382, 199–207 (2021)

    Article  Google Scholar 

  18. Ran, G.; Tu, W.; Dong, H.; Jiang, Y.; Li, J.; Liu, K.; Sun, Y.: Comparative statistical analysis of pitting in Two 2205 duplex stainless steel variants. NPJ Mater. Degrad. 8(1), 30 (2024)

    Article  Google Scholar 

  19. Bautista, A.; Velasco, F.; Guzman, S.; De la Fuente, D.; Cayuela, F.; Morcillo, M.: Corrosion behavior of powder metallurgical stainless steels in urban and marine environments. Rev. Metal. 42, 175–184 (2006)

    Article  Google Scholar 

  20. Velasco, F.; Bautista, A.: High-temperature oxidation and aqueous corrosion performance of ferritic, vacuum-sintered stainless steels prealloyed with Si. Corros. Sci. 51, 21–27 (2009)

    Article  Google Scholar 

  21. Martin, F.; Garcia, C.; Blanco, Y.; Rodriguez-Mendez, M.L.: Influence of sinter-cooling rate on the mechanical properties of powder metallurgy austenitic, ferritic, and duplex stainless steels sintered in vacuum. Mater. Sci. Eng. A 642, 360–365 (2015)

    Article  Google Scholar 

  22. Liu, X.; Ju, D.; Chen, L.: Effect of rare earth metals on passivation behavior of UNS S31803 duplex stainless steel in sulfuric acid solution. Constr. Build. Mater. 29(421), 135644 (2024)

    Article  Google Scholar 

  23. Ahmed, J.; Toor, I.H.; Al-Aqeeli, N.: Effect of sintering temperature on the corrosion properties of nanostructured Fe-18Cr-2Si alloy prepared by SPS. Mater. Corros. 68, 361–367 (2017)

    Article  Google Scholar 

  24. Pan, Y.; Sun, B.; Chen, H.; Liu, Z.; Dai, W.; Yang, X.; Yang, W.; Deng, Y.; Li, X.: Stress corrosion cracking behavior and mechanism of 2205 duplex stainless steel under applied polarization potentials. Corros. Sci. 1(231), 111978 (2024)

    Article  Google Scholar 

  25. Bautista, A.; Moral, C.; Velasco, F.; Simal, C.; Guzmán, S.: Density-improved powder metallurgical ferritic stainless steels for high-temperature applications. J. Mater. Process. Technol. 189(1–3), 344–351 (2007)

    Article  Google Scholar 

  26. Toor, I.-H.; Ahmed, J.; Hussein, M.A.; Al-Aqeeli, N.: Optimization of process parameters for spark plasma sintering of nano-structured ferritic Fe-18Cr-2Si alloy. Powder Technol. 299, 62–70 (2016)

    Article  Google Scholar 

  27. Mariappan, R.; Kumaran, S.; Rao, T.S.: Effect of sintering atmosphere on structure and properties of austeno-ferritic stainless steels. Mater. Sci. Eng. A 517, 328–333 (2009)

    Article  Google Scholar 

  28. Garcia, C.; Martin, F.; de Tiedra, P.; Cambronero, L.G.: Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen–hydrogen atmosphere. Corros. Sci. 49, 1718–1736 (2007)

    Article  Google Scholar 

  29. Uzunsoy, D.: The characterisation of PM 304 stainless steel sintered in the presence of a copper based additive. Mater. Lett. 61, 10–15 (2007)

    Article  Google Scholar 

  30. Kazior, J.; Nykiel, M.; Pieczonka, T.; Puscas, T.M.; Molinari, A.: Activated sintering of P/M duplex stainless steel powders. J. Mater. Process. Technol. 157–158, 712–717 (2004)

    Article  Google Scholar 

  31. Nagesha, K.V.; Rajanish, M.; Shivappa, D.: A review on mechanical alloying. IJERA 3(3), 921–924 (2013)

    Google Scholar 

  32. Suryanarayanaa, C.; Ivanovb, E.; Boldyrevc, V.V.: The science and technology of mechanical alloying. Mater. Sci. Eng. A 304–306, 151–158 (2001)

    Article  Google Scholar 

  33. Munir, Z.A.; Anselmi-Tamburini, U.; Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    Article  Google Scholar 

  34. Garcia, C.; Martin, F.; Blanco, Y.; de Tiedra, M.P.; Aparicio, M.L.: Corrosion behaviour of duplex stainless steels sintered in nitrogen. Corros. Sci. 51, 76–86 (2009)

    Article  Google Scholar 

  35. Garcia, C.; Martin, F.; Blanco, Y.; Tiedra, M.P.; Aparicio, M.L.: Influence of sintering under nitrogen atmosphere on microstructures of powder metallurgy duplex stainless steels. Metall. Mater. Trans. A 40, 292–301 (2009)

    Article  Google Scholar 

  36. Dobrzanski, L.A.; Brytan, Z.; Grande, M.A.; Rosso, M.; Pallavicini, E.J.: Properties of vacuum sintered duplex stainless steels. J. Mater. Process. Technol. 162–163, 286–292 (2005)

    Article  Google Scholar 

  37. Toor, I.H.: Effect of sintering holding time on the corrosion properties of nano-structured Fe-18Cr-2Si alloy prepared by SPS. Int. J. Electrochem. Sci. 11, 2897–2908 (2016)

    Article  Google Scholar 

  38. Zhang, H.W.; Gopalan, R.; Mukai, T.; Hono, K.: Fabrication of bulk nanocrystalline Fe-C alloy by spark plasma sintering of mechanically milled powder. Scr. Mater. 53, 863–868 (2005)

    Article  Google Scholar 

  39. Liu, Z.F.; Zhang, Z.H.; Lu, J.F.; Korznikov, A.V.; Korznikova, E.; Wang, F.C.: Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater. Des. 64, 625–630 (2014)

    Article  Google Scholar 

  40. Shashanka, R.; Chaira, D.: Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering. Mater Charact 99, 220–229 (2015)

    Article  Google Scholar 

  41. Yadav, R.; Vinay, G.; Kant, R.: Mechanical, metallurgical and corrosion analysis of forced cooling assisted laser bending of duplex-2205. Opt. Laser Technol. 175, 110804 (2024)

    Article  Google Scholar 

  42. Toor, I.-H.; Ahmed, J.; Hussein, M.A.; Patel, F.; Al-Aqeeli, N.: Phase evolution studies during mechanical alloying of Fe(82–x)-Cr18-Six (x = 0, 1, 2, 3) alloy. J. Alloys Compd. 683, 463–469 (2016)

    Article  Google Scholar 

  43. Patil, U.; Hong, S.J.; Suryanarayana, C.: An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition. J. Alloys Compd. 389, 121–126 (2005)

    Article  Google Scholar 

  44. Movahedi, B.; Enayati, M.H.; Wong, C.C.: Study on nanocrystallization and amorphization in Fe-Cr-Mo-B-P-Si-C system during mechanical alloying. Mater. Sci. Eng. B 172, 50–54 (2010)

    Article  Google Scholar 

  45. Mote, V.; Purushotham, Y.; Dole, B.: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6(6), 1–8 (2012)

    Google Scholar 

  46. Yousefi, M.; Sharafi, S.: The effect of simultaneous addition of Si and Co on microstructure and magnetic properties of nanostructured iron prepared by mechanical alloying. Mater. Des. 37, 325–333 (2012)

    Article  Google Scholar 

  47. Tehrani, F.; Abbasi, M.H.; Golozar, M.A.; Panjepour, M.: The effect of particle size of iron powder on α to γ transformation in the nanostructured high nitrogen Fe-Cr-Mn-Mo stainless steel produced by mechanical alloying. Mater. Sci. Eng. A 528(12), 3961–3966 (2011)

    Article  Google Scholar 

  48. Shashanka, R.; Chaira, D.: Optimization of milling parameters for the synthesis of nano-structured duplex and ferritic stainless steel powders by high energy planetary milling. Powder Technol. 278, 35–45 (2015)

    Article  Google Scholar 

  49. Isern, N.L.; Luque, H.L.; Jimenez, I.L.; Biezma, M.V.: Identification of sigma and chi phases in duplex stainless steels. Mater Charact 112, 41–46 (2016)

    Google Scholar 

  50. Lim, Y.S.; Kim, J.S.; Ahn, S.J.; Kwon, H.S.; Katada, Y.: The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20 wt.% Mn-substituted type 316L stainless steels. Corros. Sci. 43(1), 53–68 (2001)

    Article  Google Scholar 

  51. Eklund, G.S.: Initiation of pitting at sulfide inclusions in stainless steel. J. Electrochem. Soc. 121, 467 (1974)

    Article  Google Scholar 

  52. Park, K.J.; Kwon, H.: Manganese effects on repassivation kinetics and SCC susceptibility of high Mn–N austenitic stainless steel alloys. J. Electrochem. Soc. 154(9), C494 (2007)

    Article  Google Scholar 

  53. Lee, J.S.; Kim, S.T.; Lee, I.S.; Kim, G.T.; Kim, J.S.; Park, Y.S.: Effect of copper addition on the active corrosion behavior of hyper duplex stainless steels in sulfuric acid. Mater. Trans. 53, 1048–1055 (2012)

    Article  Google Scholar 

  54. Banas, J.; Mazurkiewicz, A.: The effect of copper on passivity and corrosion behaviour of ferritic and ferritic-austenitic stainless steels. Mater. Sci. Eng. A 277, 183–191 (2000)

    Article  Google Scholar 

  55. Sourisseau, T.; Chauveau, E.; Baroux, B.: Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media. Corr. Sci. 47, 1097–1117 (2005)

    Article  Google Scholar 

  56. Oguzie, E.E.; Li, J.; Liu, Y.; Chen, D.; Li, Y.; Yang, K.; Wang, F.: The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim. Acta 55(17), 5028–5035 (2010)

    Article  Google Scholar 

  57. Oh, K.; Ahn, S.; Kwon, H.: Effects of Cu on the passive film stability of Fe–20Cr–xCu (x= 0, 2, 4 wt.%) alloys in H2SO4 solution. Electrochim. Acta 15(88), 170–176 (2013)

    Article  Google Scholar 

  58. Oh, K.; Toor, I.H.; Ahn, S.; Kwon, H.S.: Influence of Cu on the passivation behavior in sulfuric acid solution. Corrosion 69(6), 560–567 (2013)

    Article  Google Scholar 

  59. Toor, I.H.; Ejaz, M.; Kwon, H.S.: Mott-Schottky analysis of passive films on Cu containing Fe-20Cr-xCu (x = 0, 4) alloys. Corros. Eng. Sci. Technol. 49, 390–395 (2014)

    Article  Google Scholar 

  60. Pardo, A.; Merino, M.C.; Carboneras, M.; Coy, M.E.; Arrabal, R.: Pitting corrosion behaviour of austenitic stainless steels with Cu and Sn additions. Corros. Sci. 49, 510–525 (2007)

    Article  Google Scholar 

  61. Kim, J.J.; Young, Y.M.: Study on the passive film of type 316 stainless steel. Int. J. Electrochem. Sci. 8, 11847–11859 (2013)

    Article  Google Scholar 

  62. Shen, K.; Jiang, W.; Chong Sun, Yu.; Wan, W.Z.; Sun, J.: Insight into microstructure, microhardness and corrosion performance of 2205 duplex stainless steel: Effect of plastic pre-strain. Corros. Sci. 210, 110847 (2023)

    Article  Google Scholar 

  63. Li, R.; Bin-guo, Fu.; Dong, T.-S.; Li, G.-l; Li, J.-K.; Zhao, X.-b; Liu, J.-H.: Effect of annealing treatment on microstructure, mechanical property and anti-corrosion behavior of X2CrNi12 ferritic stainless steel. J. Mater. Res. Technol. 18, 448–460 (2022)

    Article  Google Scholar 

  64. Lopez, D.A.; Duran, A.; Cere, S.M.: Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions. J. Mater. Sci. Mater. Med. 19, 2137–2144 (2008)

    Article  Google Scholar 

  65. UreNaa, J.; Tsipasa, S.; Pinto, A.M.; Toptan, F.; Gordo, E.; Jimenez-Morales, A.: Corrosion and tribo corrosion behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. Corros. Sci. 140, 51–60 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by King Fahd University of petroleum & Minerals (KFUPM), Saudi Arabia, in conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan-ul-Haq Toor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toor, IuH. Synthesis and Corrosion Performance Evaluation of Nanostructured Duplex Stainless Steel Alloys Prepared by MA and SPS. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09091-6

Keywords

Navigation