Skip to main content
Log in

Cu(In,Ga)Se2 absorbers prepared by electrodeposition for low-cost thin-film solar cells

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Reducing the manufacturing cost of solar cells is necessary to their industrial production. Electrodepositing is an effective, non-vacuum method which is very suitable for cutting the manufacturing cost of thin films as well as developing its large-scale industrial production. In this study, about 1-μm-thick Cu(In,Ga)Se2 (CIGS) precursors were electrodeposited on Mo/glass substrates in aqueous solution utilizing a three-electrode potentiostatic system. Triethanolamine was used as complexing agent, and all parameters of electrodeposition were precisely controlled. After that, the electrodeposited precursors were selenized in a Se atmosphere with different heating ramp rates (60 and 600 °C·min−1). High-quality CIGS films were obtained, and their characteristics were investigated by X-ray fluorescence, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, Raman spectra and near-infrared–visible (NIR-Vis) spectra. The results reveal that there are many differences between the properties of the films under different heating rates. Finally, CIGS solar cells were fabricated using a fast and a slow heating rate. The maximum efficiencies achieved for the films selenized at 60 and 600 °C·min−1 are 3.15% and 0.71%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Green MA. Solar cells: operating principles, technology and system application. Kensington: University of NSW; 1992. 62.

    Google Scholar 

  2. Kemell M, Ritala M, Leskela M. Thin film deposition methods for CulnSe(2) solar cells. Crit Rev Solid State Mater Sci. 2005;30(1):1.

    Article  Google Scholar 

  3. Green MA. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl. 2009;17(3):183.

    Article  Google Scholar 

  4. Razykov TM, Ferekides CS, Morel D, Stefanakos E, Ullal HS, Upadhyaya HM. Solar photovoltaic electricity: current status and future prospects. Sol Energy. 2011;85(8):1580.

    Article  Google Scholar 

  5. Witte W, Kniese R, Eicke A, Powalla M. Influence of the Ga content on the Mo/Cu(In,Ga)Se2 interface formation. In: Proceedings of the Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii, 2006. 553.

  6. Hamakawa Y. Thin-film Solar Cells: Next Generation Photovoltaics and Its Applications. Heidelberg: Springer; 2003. 183.

    Google Scholar 

  7. Yeh YM, Chen H, Wang SH, Huang ST, Chen YJ. Influence of Ga composition on CuInGaSe2 films using one-step electrochemical deposition methods. Chalcogenide Lett. 2014;11(1):29.

    Google Scholar 

  8. Mishra PK, Prasad JN, Dave V, Chandra R, Choudhary AK. The significant effect of film thickness on the properties of chalcopyrite thin absorbing films deposited by RF magnetron sputtering. Mater Sci Semicond Process. 2015;34:350.

    Article  Google Scholar 

  9. Yang S, Niu GH, Wang MH, Li MW, Li HX, Yi J, Zhong JX. Preparation of Cu(In, Ga)S2 absorber layers for thin film solar cell by annealing of electrodeposited Cu-Ga-S precursor layers. J Electrochem Soc. 2014;161(14):D813.

    Article  Google Scholar 

  10. Fiat S, Polat I, Bacaksiz E, Cankaya G, Koralli P, Manolakos DE, Kompitsas M. Optical and structural properties of nanostructured CuIn0.7Ga0.3(Se(1−x)Te x )(2) chalcopyrite thin films-effect of stoichiometry and annealing. J Nanosci Nanotechnol. 2014;14(7):5002.

    Article  Google Scholar 

  11. Adel C, Fethi BM, Brahim B. Optical and electrical characterization of CIGS thin films grown by electrodeposition route. Appl Phys A. 2016;122(2):62.

    Article  Google Scholar 

  12. Mandati S, Sarada BV, Dey SR, Joshi SV. Photoelectrochemistry of Cu(In, Ga)Se2 thin-films fabricated by sequential pulsed electrodeposition. J Power Sources. 2015;273:149.

    Article  Google Scholar 

  13. Wang J, Zhu J, Liao LL. Cu(In, Ga)Se2 thin films prepared from stacked precursors by post-selenization process. J Mater Sci Mater Electron. 2014;25(4):1863.

    Article  Google Scholar 

  14. Yeh MH, Hsu HR, Wang KC, Ho SJ, Chen GH, Chen HS. Toward low-cost large-area CIGS thin film: compositional and structural variations in sequentially electrodeposited CIGS thin films. Sol Energy. 2016;125:415.

    Article  Google Scholar 

  15. Negami T, Satoh T, Hashimoto Y, Nishiwaki S, Shimakawa S-I, Hayashi S. Large-area CIGS absorbers prepared by physical vapor deposition. Sol Energy Mater Sol Cells. 2001;67(1–4):1.

    Article  Google Scholar 

  16. Powalla M, Voorwinden G, Hariskos D, Jackson P, Kniese R. Highly efficient CIS solar cells and modules made by the co-evaporation process. Thin Solid Films. 2009;517(7):2111.

    Article  Google Scholar 

  17. Yin B, Lou CG. Carrier transportation in polycrystalline CuInSe2 thin films with Cu-deficient grain boundaries. Rare Met. 2015;34(7):510.

    Article  Google Scholar 

  18. Kang F, Ao J, Sun G, He Q, Sun Y. Properties of CuIn x Ga1−x Se2 thin films grown from electrodeposited precursors with different levels of selenium content. Curr Appl Phys. 2010;10(3):886.

    Article  Google Scholar 

  19. Fu Y-P, You R-W, Lew KK. CuIn1−x Ga x Se2 absorber layer fabricated by pulse-reverse electrodeposition technique for thin films solar cell. J Electrochem Soc. 2009;156(12):D553.

    Article  Google Scholar 

  20. Liu F, Huang C, Lai Y, Zhang Z, Li J, Liu Y. Preparation of Cu(In, Ga)Se2 thin films by pulse electrodeposition. J Alloy Compd. 2011;509(8):L129.

    Article  Google Scholar 

  21. Li KK, Zhang YF, Cao ST, Zhang Y. Current efficiency of fCGa electrodeposition under different anions concentrations. Rare Met. 2016;35(4):349.

    Article  Google Scholar 

  22. Kwak W-C, Han S-H, Kim TG, Sung Y-M. Electrodeposition of Cu(In, Ga)Se2 crystals on high-density CdS nanowire arrays for photovoltaic applications. Cryst Growth Des. 2010;10(12):5297.

    Article  Google Scholar 

  23. Jackson P, Hariskos D, Wuerz R, Wischmann W, Powalla M. Compositional investigation of potassium doped Cu(In, Ga)Se2 solar cells with efficiencies up to 20.8%. Phys Status Solidi-Rapid Res Lett. 2014;8(3):219–20.

    Article  Google Scholar 

  24. Lincot D, Guillemoles JF, Taunier S, Guimard D, Sicx-Kurdi J, Chaumont A, Roussel O, Ramdani O, Hubert C, Fauvarque JP, Bodereau N, Parissi L, Panheleux P, Fanouillere P, Naghavi N, Grand PP, Benfarah M, Mogensen P, Kerrec O. Chalcopyrite thin film solar cells by electrodeposition. Sol Energy. 2004;77(6):725.

    Article  Google Scholar 

  25. Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films. 2005;480–481:520.

    Article  Google Scholar 

  26. Rau U, Schock HW. Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Appl Phys A Mater Sci Process. 1999;69(2):131.

    Article  Google Scholar 

  27. Insignares-Cuello C, Oliva F, Neuschitzer M, Fontane X, Broussillou C, de Monsabert TG, Saucedo E, Ruiz CM, Perez-Rodriguez A, Izquierdo-Roca V. Advanced characterization of electrodeposition-based high efficiency solar cells: non-destructive Raman scattering quantitative assessment of the anion chemical composition in Cu(In, Ga)(S, Se)(2) absorbers. Sol Energy Mater Sol Cells. 2015;143:212.

    Article  Google Scholar 

  28. Contreras MA, Romero MJ, Noufi R. Characterization of Cu(In, Ga)Se2 materials used in record performance solar cells. Thin Solid Films. 2006;511–512:51.

    Article  Google Scholar 

  29. Mandati S, Sarada BV, Dey SR, Joshi SV. CuIn1−x Ga x Se2 thin-film absorber layers for solar photovoltaics fabricated by two-stage pulsed current electrodeposition. Mater Lett. 2014;118:158.

    Article  Google Scholar 

  30. Lee D-Y, Park S, Kim J. Structural analysis of CIGS film prepared by chemical spray deposition. Curr Appl Phys. 2011;11(S1):S88.

    Article  Google Scholar 

  31. Izquierdo-Roca V, Saucedo E, Ruiz CM, Fontane X, Calvo-Barrio L, Alvarez-Garcia J, Grand P-P, Jaime-Ferrer JS, Perez-Rodriguez A, Ramon Morante J, Bermudez V. Raman scattering and structural analysis of electrodeposited CuInSe2 and S-rich quaternary CuIn(S, Se)(2) semiconductors for solar cells. Phys Status Solidi A Appl Mater Sci. 2009;206(5):1001.

    Article  Google Scholar 

  32. Zhang ZW, Li J. Influence of annealing conditions on the structure and compositions of electrodeposited CuInSe2 films. Solid State Commun. 2010;150:2346.

    Article  Google Scholar 

  33. Witte W, Kniese R, Powalla M. Raman investigations of Cu(In, Ga)Se2 thin films with various copper contents. Thin Solid Films. 2008;517(2):867.

    Article  Google Scholar 

  34. Hsieh T-P, Chuang C-C, Wu C-S, Chang J-C, Guo J-W, Chen W-C. Effects of residual copper selenide on CuInGaSe2 solar cells. Solid-State Electron. 2011;56(1):175.

    Article  Google Scholar 

  35. Dimmler B, Dittrich H, Menner R, Schock HW. Performance and optimization of heterojunctions based on Cu(Ga, In)Se2, In: Conference Record of the Nineteenth IEEE Photovoltaic Specialists Conference, 1987: 1454.

  36. Wei SH, Zhang SB, Zunger A. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Appl Phys Lett. 1998;72(24):3199.

    Article  Google Scholar 

  37. Dullweber T, Hanna G, Shams-Kolahi W, Schwartzlander A, Contreras MA, Noufi R, Schock HW. Study of the effect of gallium grading in Cu(In, Ga)Se2. Thin Solid Films. 2000;361:478.

    Article  Google Scholar 

  38. Malaquias JC, Regesch D, Dale PJ, Steichen M. Tuning the gallium content of metal precursors for Cu(In, Ga)Se2 thin film solar cells by electrodeposition from a deep eutectic solvent. Phys Chem Chem Phys. 2014;16(6):2561.

    Article  Google Scholar 

  39. Ribeaucourt L, Chassaing E, Savidand G, Lincot D. Synthesis of Cu(In, Ga)Se2 absorber using one-step electrodeposition of Cu–In–Ga precursor. Thin Solid Films. 2011;519(21):7241.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National High Technology Research and Development Program of China (No. 2015AA034201), the National Natural Science Foundation of China (No. 11474355) and the Chinese Universities Scientific Fund (No. 2017LX002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Jin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, JY., Guo, ZF., Pan, K. et al. Cu(In,Ga)Se2 absorbers prepared by electrodeposition for low-cost thin-film solar cells. Rare Met. 36, 729–736 (2017). https://doi.org/10.1007/s12598-017-0941-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0941-6

Keywords

Navigation