Skip to main content
Log in

Current efficiency of Ga electrodeposition under different anions concentrations

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The gallium electrodeposition from alkaline solution has a very low current efficiency, the reason for which is still not quite understood. The effects of electrode materials used for gallium electrodeposition, as well as the effects of NaOH concentration and the anions concentrations in the solution, including SO4 2−, SiO3 2−, CO3 2−, AlO2 , F, and Cl, on the deposition were analyzed in this study. The suitable materials of SUS316–SUS316 were suggested for the gallium electrodeposition. Based on the electrode couples, the NaOH concentration of 4 mol·L−1 for gallium electrodeposition exhibits the greatest current efficiency. Moreover, the current efficiency would decrease in the electrolyte along with the increasing concentration of the anions, except that, 0.2 mol·L−1 Cl in the solution slightly improves the current efficiency of gallium electrodeposition. Moreover, the gallium deposited on the cathode from the solution with 0.6 mol·L−1 SiO3 2− appears tiny black in color and coarse. Meanwhile, SUS304 is shown to be not suitable to be used as cathode for the gallium electrodeposition from the alkaline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jadvar R, McCoy BJ, Ford B, Galt J. Recovery of gallium and arsenic from GaAs wafer manufacturing slurries. Environ Prog. 1991;10(4):278.

    Article  Google Scholar 

  2. Wu XL, Wu SK, Qin WQ, Ma XH, Niu YJ, Lai SS, Yang CR, Jiao F, Ren LY. Reductive leaching of gallium from zinc residue. Hydrometallurgy. 2012;113:195.

    Article  Google Scholar 

  3. Nishihama S, Hirai T, Komasawa I. Separation and recovery of gallium and indium from simulated zinc refinery residue by liquid–liquid extraction. Ind Eng Chem Res. 1999;38(3):1032.

    Article  Google Scholar 

  4. Huang Z, Yang Y, Cai J, Guo Y, Li G, Jiang T, Qiu G. Comprehensive utilization of zinc-leaching residue and concentration mechanism of gallium. J Central South Univ. 2002;33(02):133.

    Google Scholar 

  5. Kinoshita T, Akita S, Nii S, Kawaizumi F, Takahashi K. Solvent extraction of gallium with non-ionic surfactants from hydrochloric acid solution and its application to metal recovery from zinc refinery residues. Sep Purif Technol. 2004;37(2):127.

    Article  Google Scholar 

  6. Ma X, Tan W, Wu X, Ren L. Extracting gallium and germanium from zinc-leaching residues by hot-acid leaching process. Min Metall Eng. 2012;32(02):71.

    Google Scholar 

  7. Font O, Querol X, Juan R, Casado R, Ruiz CR, Lopez-Soler A, Coca P, Garcia Pena F. Recovery of gallium and vanadium from gasification fly ash. J Hazard Mater. 2007;139(3):413.

    Article  Google Scholar 

  8. Zeng QY. Recovery of gallium from fly ash: an experimental study. Beijing: China University of Geosciences; 2007. 13.

    Google Scholar 

  9. Bai G, Teng W, Sun Y, Wang X, Qin J. Study on acid pre-extraction process for gallium from fly ash. Appl Chem Ind. 2008;07:757.

    Google Scholar 

  10. Xu K, Deng T, Liu J, Peng W. Study on the recovery of gallium from phosphorus flue dust by leaching with spent sulfuric acid solution and precipitation. Hydrometallurgy. 2007;86(3–4):172.

    Article  Google Scholar 

  11. Wang SJ. The research of extracting gallium from the flue dust extracted in the phosphorus industry. Kunming: Kunming University of Science and Technology; 2009. 16.

    Google Scholar 

  12. Chen YF, Yang FR, Jean JS, Tsai CY. Separation of gallium and arsenic from the wafer grinding extraction solution. J Environ Sci Health Part A. 2004;39(9):2473.

    Article  Google Scholar 

  13. Su Y, Li G, Luo K. Research progress on extraction of metal gallium. Hydrometall China. 2003;01:9.

    Google Scholar 

  14. Gupta B, Mudhar N, Singh I. Separations and recovery of indium and gallium using bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272). Sep Purif Technol. 2007;57(2):294.

    Article  Google Scholar 

  15. Katsuta S, Okai M, Yoshimoto Y, Kudo Y. Extraction of gallium(III) from hydrochloric acid solutions by trioctylammonium-based mixed ionic liquids. Anal Sci. 2012;28(10):1009.

    Article  Google Scholar 

  16. Mahamuni SV, Wadgaonkar PP, Anuse MA. Liquid-liquid extraction and recovery of gallium(III) from acid media with 2-octylaminopyridine in chloroform: analysis of bauxite ore. J Serb Chem Soc. 2010;75(8):1099.

    Article  Google Scholar 

  17. Liu JS, Chen H, Chen XY, Guo ZL, Hu YC, Liu CP, Sun YZ. Extraction and separation of In(III), Ga(III) and Zn(II) from sulfate solution using extraction resin. Hydrometallurgy. 2006;82(3–4):137.

    Article  Google Scholar 

  18. Geidarov AA. Extractive recovery of gallium(iii) from acid sulfate solutions with primary amines. Russ J Appl Chem. 2008;81(12):2084.

    Article  Google Scholar 

  19. Mihaylov I, Distin PA. Gallium solvent—extraction in hydrometallurgy: an overview. Hydrometallurgy. 1992;28(1):13.

    Google Scholar 

  20. Gupta B, Mudhar N, Begum Z, Singh I. Extraction and recovery of Ga(III) from waste material using Cyanex 923. Hydrometallurgy. 2007;87(1–2):18.

    Article  Google Scholar 

  21. Zhao Z, Yang Y, Xiao Y, Fan Y. Recovery of gallium from Bayer liquor: a review. Hydrometallurgy. 2012;125:115.

    Article  Google Scholar 

  22. Wang J. Production processes and uses of gallium. Sichuan Nonferrous Met. 2003;04:14.

    Google Scholar 

  23. Lu X, Wang L, Wang X, Niu X. Research progress in gallium recovery technology. Nonferrous Met. 2008;60(04):105.

    Google Scholar 

  24. Gupta B, Mudhar N, Tandon SN. Extraction and separation of gallium using Cyanex 301: its recovery from Bayer’s liquor. Ind Eng Chem Res. 2005;44(6):1922.

    Article  Google Scholar 

  25. Kekesi T. Gallium extraction from synthetic Bayer liquors using Kelex 100-kerosene, the effect of loading and stripping conditions on selectivity. Hydrometallurgy. 2007;88(1–4):70.

    Google Scholar 

  26. Nakayama M, Egawa H. Recovery of gallium(III) from strongly alkaline media using a Kelex-100-loaded ion-exchange resin. Ind Eng Chem Res. 1997;36(10):4365.

    Article  Google Scholar 

  27. Selvi P, Ramasami M, Samuel MHP, Sripriya R, Senthilkumar K, Adaikkalam P, Srinivasan GN. Gallium recovery from Bayer’s liquor using hydroxamic acid resin. J Appl Polym Sci. 2004;92(2):847.

    Article  Google Scholar 

  28. Rao KS, Sarangi D, Dash PK, Chaudhury GR. Preferential extraction of gallium from Bayer liquor using ion exchange chelating resin containing hydroxamic acid functional group. J Chem Technol Biotechnol. 2003;78(5):555.

    Article  Google Scholar 

  29. Rao KS, Chaudhury GR, Krishna PG, Das SC, Misra VN. Recovery of gallium from Bayer liquor using ion exchange technique: a case study. Miner Metall Process. 2006;23(1):22.

    Google Scholar 

  30. Riveros PA. Recovery of gallium from Bayer liquous with an amidoxime resin. Hydrometallurgy. 1990;25(1):1.

    Article  Google Scholar 

  31. Selvi P, Ramasami M, Samuel MHP, Adaikkalam P, Srinivasan GN. Recovery of gallium from Bayer liquor using chelating resins in fixed-bed columns. Ind Eng Chem Res. 2004;43(9):2216.

    Article  Google Scholar 

  32. Xie F, Wang J, Guo P, Wei L, Ma M, Liu P. Recovery of gallium from Bayer solution with ion exchange. Light Met. 2004;10:10.

    Google Scholar 

  33. Varadharaj A, Rao GP. Extration of gallium metal by exchange reaction between sodium amalgam and Ga(III): a cyclic voltammetric study. J Appl Electrochem. 1986;16(6):929.

    Article  Google Scholar 

  34. Abdul Kader JAM, Varadaraj A, Srinivasan GN, Srinivasan R. Gallium as a byproduct of aluminium industries in India. Trans Indian Inst Met. 1982;35(3):276.

    Google Scholar 

  35. Chang LR, Chen YF, Yang FR. Recovering metal gallium from rich-gallium alkaline aqueous solution using electrode position process. In: Proceedings of the 8th International Symposium on East Asian Resources Recycling Technology 2005: Resources Recycling Technology, 2005: 372.

Download references

Acknowledgments

This study was financially supported by the National High Technology Research and Development Program of China (No. 2011AA060701) and the National Natural Science Foundation of China (No. 21276258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Fei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, KK., Zhang, YF., Cao, ST. et al. Current efficiency of Ga electrodeposition under different anions concentrations. Rare Met. 35, 349–355 (2016). https://doi.org/10.1007/s12598-013-0214-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0214-y

Keywords

Navigation