Skip to main content
Log in

Fabrication of Cu(In,Ga)(S,Se)2 Solar Cells by Solution Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cu(In,Ga)S2 (CIGS) nanoparticles were synthesized by hot-injection method at temperature of 240°C under nitrogen ambient, then dispersed in hexanethiol to form stable ink. CIGS thin films were prepared by doctor-blade method and annealed under different amounts of selenium at 540°C for 20 min. After annealing, the Cu(In,Ga)(S,Se)2 (CIGSSe) films showed increasing crystallinity, particle size, and Se concentration with increasing amount of selenium. In addition, only CIGSSe phase existed in the film after annealing. The properties of CIGSSe cells were improved with increasing amount of selenium. The optimal results were obtained for the sample prepared with 0.2 g Se, showing short-circuit photocurrent density (J SC) of 27.36 mA/cm2, open-circuit voltage (V OC) of 0.42 V, fill factor (FF) of 0.36, and conversion efficiency (η) of 4.2%. These results provide important insights into economically feasible production of CIGS-based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Repins, M.A. Contreras, and B. Egaas, Prog. Photovolt. Res. Appl. 16, 235 (2008).

    Article  Google Scholar 

  2. R.N. Bhattacharya, M.A. Contreras, and G. Teeter, Jpn. J. Appl. Phys. 43, 1475 (2004).

    Article  Google Scholar 

  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 10, 1002 (2011).

    Google Scholar 

  4. M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, Prog. Photovolt. Res. Appl. 7, 311 (1999).

    Article  Google Scholar 

  5. D.B. Mitzi, M. Yuan, and W. Liu, Adv. Mater. 20, 3657 (2008).

    Article  Google Scholar 

  6. T. Wada, Y. Matsuo, and S. Nomura, Physica 203, 2593 (2006).

    Google Scholar 

  7. H.C. Wang, C.C. Wang, S.W. Feng, L.H. Chen, and Y.S. Lin, Opt. Mater. Express 3, 54 (2013).

    Article  Google Scholar 

  8. O. Lundberg, M. Edoff, and L. Stolt, Thin Solid Films 480–481, 520 (2005).

    Article  Google Scholar 

  9. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witter, and M. Powalla, Phys. Status Solidi rrl 10, 583 (2016).

  10. P. Jackson, R. Wurz, U. Rau, J. Mattheis, M. Kurth, T. Schlotzer, G. Bilger, and Jurgen, Prog. Photovolt. Res. Appl. 15, 507 (2007).

    Article  Google Scholar 

  11. K. Ramanathan, G. Teeter, J.C. Keane, and R. Noufi, Thin Solid Films 480–481, 499 (2005).

    Article  Google Scholar 

  12. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, Phys. Status Solidi (a) 203, 2593 (2006).

    Article  Google Scholar 

  13. S.J. Ahn, C.W. Kim, J.H. Yun, J. Gwak, S. Jeong, B.H. Ryu, and H.H. Yoon, J. Phys. Chem. C 114, 8108 (2010).

    Article  Google Scholar 

  14. Joint Committee for Powder Diffraction Standards, powder diffraction file No. 35-1102 JDCPS International Center Diffraction Data (1997).

  15. B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha, Appl. Phys. Lett. 101, 053903 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Duy Cuong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, P.A., Phan, V.N., Huy, T.D. et al. Fabrication of Cu(In,Ga)(S,Se)2 Solar Cells by Solution Method. J. Electron. Mater. 46, 3453–3457 (2017). https://doi.org/10.1007/s11664-016-5236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5236-4

Keywords

Navigation