Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of gadolinium- and misch metal-added Mg–Al alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The study investigates the effects of individual and combined additions of gadolinium (Gd) and misch metal (MM) on the microstructure and mechanical properties of Mg–4Al and Mg–9Al alloys. The results show that the additions significantly alter the microstructure and grain size of the base alloys. Mg–4Al based alloys have globular morphology, whereas Mg–9Al based alloys have dendritic morphology. The addition of alloying elements, Gd and MM, introduces rectangular-shaped Al2Gd phase and needle-shaped Al11RE3 phase, respectively. The best mechanical properties at room temperature are shown by Mg–9Al–2Gd alloy with tensile strength and elongation of 214 MPa and 6.0%, respectively, whereas Mg–4Al–2Gd alloy exhibits the best properties at elevated temperature (150 °C) with tensile strength and elongation of 172 MPa and 14.0%, respectively. The study also reports the microhardness value of different phases along with the cast alloys. Eutectic Mg17Al12 phase shows the highest hardness (VHN 92) followed by lamellar Mg17Al12 (VHN 83) and α-Mg matrix (VHN 68).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Asl KM, Tari A, Khomamizadeh F. The effect of different content of Al, RE and Si element on the microstructure, mechanical and creep properties of Mg–Al alloys. Mater Sci Eng A. 2009;523(1–2):1.

    Google Scholar 

  2. Saidpour H. Lightweight High Performance Materials for Car Body Structures. In: NTI Technology Conference, London, 2004:14.

  3. Mustafa KK. Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol. 2008;39(9):851.

    Google Scholar 

  4. Xiaoquin Z, Quodong W, Yizhen L, Yanping Z, Wenjiang D, Yunhu Z. Influence of beryllium and rare earth additions on ignition-proof magnesium alloys. J Mater Proc Tech. 2001;112(1):17.

    Article  Google Scholar 

  5. Friedrich H, Schumann S. Research for a “new age of magnesium” in the automotive industry. J Mater Proc Technol. 2001;17(3):276.

    Article  Google Scholar 

  6. Yong YI, Yongge F, Yongjian T. Effect of lanthanum-praseodymium-cerium mischmetal on mechanical properties and microstructure of Mg–A1 alloys. J Wuhan Univ Technol. 2011;26(1):102.

    Article  Google Scholar 

  7. Wang J, Shi N, Wang L, Cao Z, Wang L, Li J. Effect of zinc and mischmetal on microstructure and mechanical properties of Mg–Al–Mn alloy. J Rare Earth. 2010;28(5):794.

    Article  CAS  Google Scholar 

  8. Zhang J, Liu S, Leng Z, Zhang M, Meng J, Wu R. Microstructures and mechanical properties of heat-resistant HPDC Mg–4Al-based alloys containing cheap misch metal. Mater Sci Eng A. 2011;528(6):2670.

    Article  Google Scholar 

  9. Rzychon T, Kielbus A. Effect of rare earth elements on the microstructure of Mg–Al alloys. JAMME. 2006;17(1–2):149.

    Google Scholar 

  10. Xue S, Sun YS, Ding SS, Bai Q, Bai J. Effects of calcium additions on microstructure and creep behaviour of AE42 alloy. Mater Sci Technol. 2008;21(7):847.

    Article  Google Scholar 

  11. Luo A. Recent magnesium alloy development for elevated temperature applications. Int Mater Rev. 2004;49(1):13.

    Article  CAS  Google Scholar 

  12. Li KJ, Li QA, Jing XT, Chen J, Zhang XY. Effects of Sb, Sm, and Sn additions on the microstructure and mechanical properties of Mg–6Al–1.2Y–0.9Nd alloy. Rare Met. 2009;28(5):516.

    Article  Google Scholar 

  13. Wang QD, Peng JG, Michel S, Blandin JJ. Effects of aging on the microstructures and mechanical properties of extruded AM50 + xCa magnesium alloys. Rare Met. 2006;25(4):377.

    Article  CAS  Google Scholar 

  14. Cizek J, Prochazka I, Smola B, Stulikova I, Ocenasek V. Influence of deformation on precipitation process in Mg–15 wt%Gd alloy. J Alloys Compd. 2007;430(1–2):92.

    Article  CAS  Google Scholar 

  15. Wang X, Du W, Liu K, Wang Z, Li S. Microstructure, tensile properties and creep behaviors of as-cast Mg–2Al–1Zn–xGd (x = 1, 2, 3, and 4 wt%) alloys. J Alloys Compd. 2012;522:78.

    Article  CAS  Google Scholar 

  16. Dargusch MS, Pettersen K, Nogita K, Nave MD, Dunlop GL. The effect of aluminium content on the mechanical properties and microstructure of die cast binary magnesium–aluminium alloys. Mater Trans. 2006;47(4):977.

    Article  CAS  Google Scholar 

  17. Dahle AK, Lee YC, Nave MD, Schaffer PL, StJohn DH. Development of the As-cast microstructure in magnesium–aluminium alloys. J Light Met. 2001;1:61.

    Article  Google Scholar 

  18. Ma YT, Zhang XG, Liu HB, Meng LG. Effects of Er on the microstructure and properties of AZ31 magnesium alloy prepared via the EMS process. Rare Met. 2010;29(4):339.

    Article  CAS  Google Scholar 

  19. Peng QM, Wu YM, Fang DQ, Meng J, Wang LM. Microstructures and properties of Mg–7Gd alloy containing Y. J Alloys Compd. 2007;430(1–2):252.

    Article  CAS  Google Scholar 

  20. Rokhlin LL, Dobatkina TV, Nikitina NI. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups. Mater Sci Forum. 2003;419:291.

    Article  Google Scholar 

  21. Lee YC, Dahle AK, StJohn DH. The role of solute in grain refinement of magnesium. Metall Mater Trans A. 2000;3(11):2895.

    Article  Google Scholar 

  22. Luo A. Understanding the solidification of magnesium alloys. In: Third International Magnesium Conference. (Eds. G.W. Lorimer), Manchester, UK. 1996. 449.

  23. Reed-Hill RE. Physically Metallurgy Principles. 2nd ed. New York: Litton Educational Publishing; 2008.

    Google Scholar 

  24. Qiu D, Zhang MX. Effect of active heterogeneous nucleation particles on the grain refining efficiency in an Mg–10 wt% Y cast alloy. J Alloys Compd. 2009;488(1):260.

    Article  CAS  Google Scholar 

  25. Gharghouri MA, Weatherly GC, Embury JD. The interaction of twins and precipitates in a Mg–7.7at.% Al alloy. Philos Mag A. 1998;78(5):1137.

    Article  CAS  Google Scholar 

  26. Mahmudi R, Kabirian F, Nematollahi Z. Microstructural stability and high-temperature mechanical properties of AZ91 and AZ91 + 2RE magnesium alloys. Mater Des. 2011;32(5):2583.

    Article  CAS  Google Scholar 

  27. Mordike BL, Ebert T. Magnesium: properties—applications—potential. Mater Sci Eng A. 2001;302(1):37.

    Article  Google Scholar 

  28. Regev M, Aghoin E, Rosen A, Bamberger M. Creep studies of coarse-grained AZ91D magnesium castings. Mater Sci Eng A. 1998;252(1):6.

    Article  Google Scholar 

  29. Caceres CH, Davidson CJ, Griffiths JR, Newton CL. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater Sci Eng A. 2002;325(1–2):344.

    Article  Google Scholar 

  30. Dieter GE. Mechanical Metallurgy. 3rd ed. London: McGraw-Hill Book Company; 1986. 182.

    Google Scholar 

  31. Hultgren R, Mitchell DW. Grain refinement of magnesium alloys without superheating. Trans AIME. 1945;161:323.

    Google Scholar 

  32. Fleischer RL. Solution hardening. Acta Metall. 1961;9(11):996.

    Article  CAS  Google Scholar 

  33. Labusch R. A statical theory of solid solution hardening. Phys Status Solidi B. 1970;41(2):659.

    Article  Google Scholar 

  34. Guo X, Li P, Zeng DJ. Electron theory research in Mg–Y Alloy. Chin Rare Earth Soc. 2003;21(6):672.

    CAS  Google Scholar 

  35. Ardell AJ. Precipitation hardening. Metall Mater Trans A. 1985;16(12):2131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavish Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L.K., Joseph, P., Srinivasan, A. et al. Microstructure and mechanical properties of gadolinium- and misch metal-added Mg–Al alloy. Rare Met. 41, 3205–3213 (2022). https://doi.org/10.1007/s12598-017-0928-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0928-3

Keywords

Navigation