Skip to main content
Log in

Effects of gadolinium addition on the microstructure and mechanical properties of Mg–9Al alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

This research aims to study the significance of Gd addition (0wt%–2wt%) on the microstructure and mechanical properties of Mg–9Al alloy. The effect of Gd addition on the microstructure was investigated via X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Mg–9Al alloy contained two phases, α-Mg and β-Mg17Al12. Alloying with Gd led to the emergence of a new rectangular-shaped phase, Al2Gd. The grain size also decreased marginally upon Gd addition. The ultimate tensile strength and microhardness of Mg–9Al alloy increased by 23% and 19%, respectively, upon 1.5wt% Gd addition. We observed that, although Mg–9Al–2.0Gd alloy exhibited the smallest grain size (181 μm) and the highest dislocation density (5.1 × 1010 m−2) among the investigated compositions, the Mg–9Al–1.5Gd alloy displayed the best mechanical properties. This anomalous behavior was observed because the Al2Gd phase was uniformly distributed and present in abundance in Mg–9Al–1.5Gd alloy, whereas it was coarsened and asymmetrically conglomerated in Mg–9Al–2.0Gd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Kim, S.G. Lee, J.S. Park, and H.G. Kim, Laser surface modification of Ti and TiC coatings on magnesium alloy, Phys. Met. Metall., 115(2014), No. 13, p. 1389.

    Article  Google Scholar 

  2. H. Hu, A. Yu, N. Li, and J.E. Allison, Potential magnesium alloys for high temperature die cast automotive applications: A review, Mater. Manuf. Processes, 18(2003), No. 5, p. 687.

    Article  Google Scholar 

  3. B.L. Mordike and T. Ebret, Magnesium: Properties— applications—potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.

    Article  Google Scholar 

  4. M.K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol., 39(2008), No. 9-10, p. 851.

    Article  Google Scholar 

  5. A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev., 49(2004), No. 1, p. 13.

    Article  Google Scholar 

  6. P.J. Li, B. Tang, and E.G. Kandalova, Microstructure and properties of AZ91D alloy with Ca additions, Mater. Lett., 59(2005), No. 6, p. 671.

    Article  Google Scholar 

  7. Y.M. Zhu, A.J. Morton, and J.F. Nie, Characterisation of intermetallic phases in an Mg–Y–Ag–Zn casting alloy, Philos. Mag. Lett., 90(2010), No. 3, p. 173.

    Article  Google Scholar 

  8. L.Q. Wu, T.L. Zhang, C.L. Cui, R.Z. Wu, M.L. Zhang, and L.G. Hou, Influence of Nd and Y on texture of as-extruded Mg–5Li–3Al–2Zn alloy, Phys. Met. Metall., 117(2016), No. 7, p. 735.

    Article  Google Scholar 

  9. S. Xue, Y.S. Sun, S.S. Ding, Q. Bai Q, and J. Bai, Effects of calcium additions on microstructure and creep behaviour of AE42 alloy, Mater. Sci. Technol., 21(2008), No. 7, p. 847.

    Article  Google Scholar 

  10. Y. Yi, Y.G. Fan, and Y.J. Tang, Effect of lanthanum–praseodymium–cerium mischmetal on mechanical properties and microstructure of Mg–A1 alloys, J. Wuhan Univ. Technol., 26(2011), No. 1, p. 102.

    Article  Google Scholar 

  11. L. Gao, R.S. Chena, and E.H. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, J. Alloys Compd., 481(2009), No. 1-2, p. 379.

    Article  Google Scholar 

  12. A. Boby, K.K. Ravi Kumar, U.T.S. Pillai, and B.C. Pai, Effect of antimony and yttrium addition on the high temperature properties of AZ91 magnesium alloy, Procedia Eng., 55(2013), p. 98.

    Article  Google Scholar 

  13. L.K. Singh, A. Srinivasan, U.T.S. Pillai, M.A. Joseph, and B.C. Pai, The effect of yttrium addition on the microstructure and mechanical properties of Mg alloys, Trans. Indian Inst. Met., 68(2015), No. 3, p. 331.

    Article  Google Scholar 

  14. A. Elsayed, D. Sediako, and C. Ravindran, Solidification behavior of Mg–Zn and Mg–Zn–Zr alloys using in-situ neutron diffraction, J. Mater. Eng. Perform., 24(2015), No. 6, p. 2250.

    Article  Google Scholar 

  15. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, and D.H. StJohn, Development of the as-cast microstructure in magnesium–aluminium alloys, J. Light Met., 1(2001), No. 1, p. 61.

    Article  Google Scholar 

  16. M.S. Dargusch, K. Pettersen, K. Nogita, M.D. Nave, and G.L. Dunlop, The effect of aluminium content on the mechanical properties and microstructure of die cast binary magnesium–aluminium alloys, Mater. Trans., 47(2006), No. 4, p. 977.

    Article  Google Scholar 

  17. X.D. Wang, W.B. Du, K. Liu, Z.H. Wang, and S.B. Li, Microstructure, tensile properties and creep behaviors of as-cast Mg–2Al–1Zn–xGd (x = 1, 2, 3, and 4 wt.%) alloys, J. Alloys Compd., 522(2012), p. 78.

    Article  Google Scholar 

  18. Y. Xiang, J. Liang, H.X. Liu, and X.L. Zhang, Effect of rare earth element Gd on the mechanical properties of AZ91 alloy, [in] The 3rd International Conference on Material, Mechanical and Manufacturing Engineering, Guangzhou, 2015, p. 17.

    Google Scholar 

  19. L.L. Rokhlin, T.V. Dobatkina, and N.I. Nikitina, Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups, Mater. Sci. Forum, 419(2003), p. 291.

    Article  Google Scholar 

  20. Y.C. Lee, A.K. Dahle, and D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A, 3(2000), No. 11, p. 2895.

    Article  Google Scholar 

  21. S. De Negri, A. Saccone, G. Cacciamani, and R. Ferro, The Al–R–Mg (R = Gd, Dy, Ho) systems. Part I: experimental investigation, Intermetallics, 11(2003), No. 11-12, p. 1125.

    Article  Google Scholar 

  22. M. Sumida, S.H. Jung, and T. Okane, Microstructure, solute partitioning and material properties of gadolinium-doped magnesium alloy AZ91D, J. Alloys Compd., 475(2009), No. 1-2, p. 903.

    Article  Google Scholar 

  23. G.H. Xiao, N.R. Tao, and K. Lu, Effect of strain, strain rate and on deformation twinning in a Cu–Zn alloy, Scripta Mater., 59(2008), No. 9, p. 975.

    Article  Google Scholar 

  24. W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature, J. Magnesium Alloys, 2(2014), No. 4, p. 299.

    Article  Google Scholar 

  25. L. Alexander and H.P. Klug, Determination of crystallite size with the X-ray spectrometer, J. Appl. Phys., 21(1950), No. 2, p. 137.

    Article  Google Scholar 

  26. C.H. Cáceres, C.J. Davidson, J.R. Griffiths, and C.L. Newton, Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy, Mater. Sci. Eng. A, 325(2002), No. 1, p. 344.

    Article  Google Scholar 

  27. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, 1986.

    Google Scholar 

  28. R. Hultgren and D.W. Mitchell, Grain refinement of magnesium alloys without superheating, Trans. AIME, 161(1945), p. 323.

    Google Scholar 

  29. R.L. Fleisgher, Solution hardening, Acta Metall., 9(1961), No. 11, p. 996.

    Article  Google Scholar 

  30. R. Labusch, A statistical theory of solid solution hardening, Phys. Status Solidi B, 41(1970), No. 2, p. 659.

    Article  Google Scholar 

  31. X.T. Guo, P.J. Li, and D.B. Zeng, Electron theory research in Mg–Y alloy, J. Chin. Rare Earth Soc., 21(2003), No. 6, p. 672.

    Google Scholar 

  32. A.J. Ardell, Precipitation hardening, Metall. Mater. Trans. A, 16(1985), No. 12, p. 2131.

    Article  Google Scholar 

  33. J.L. Wang, N. Shi, L.D. Wang, Z.Y. Cao, L.M. Wang, and J.P. Li, Effect of zinc and mischmetal on microstructure and mechanical properties of Mg–Al–Mn alloy, J. Rare Earths, 28(2010), No. 5, p. 794.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support of the Council of Scientific and Industrial Research and Ministry of Human Resource Development, Government of India, and the access to the facilities of Central Research Facility, Indian Institute of Technology Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Thanu Subramonia Pillai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L.K., Bhadauria, A., Srinivasan, A. et al. Effects of gadolinium addition on the microstructure and mechanical properties of Mg–9Al alloy. Int J Miner Metall Mater 24, 901–908 (2017). https://doi.org/10.1007/s12613-017-1476-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1476-4

Keywords

Navigation