Skip to main content
Log in

Effect of Zn addition on microstructure and mechanical properties of Mg–9Gd–3Y–0.5Zr alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comparison of microstructure, mechanical properties and fracture behavior of Mg–9Gd–3Y–x Zn–0.5Zr ( x = 0, 0.2, 0.5, 1.0, and 1.5) (wt%) alloys under different thermal treatment conditions was investigated in this study. The results showed that the as-cast alloys were comprised of Mg matrix, eutectic compounds and cuboid-shaped phases. The eutectics were Mg24(Gd, Y)5 in the alloys of Zn content ≤0.2 wt%, while (Mg, Zn)3RE in the other three alloys. Fine lamellar long period stacking ordered structure formed inside of matrix of the as-cast Zn-containing alloys and its quantity increases with raising Zn content. Mg12(Gd, Y)Zn was observed at grain boundary of Mg matrix after solution treatment in the alloys of Zn content ≥0.5 wt%. Peak-aged Mg–9Gd–3Y–0.5Zn–0.5Zr alloy exhibited a desirable combination of strength and elongation with 244 MPa in yield strength, 371 MPa in ultimate tensile strength and 3.8% in EL. Meanwhile, the fracture behavior of the studied alloys was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Magnesium: Properties-applications-potential. Mater. Sci. Eng., A 302, 37–45 (2001).

    Google Scholar 

  2. D.J. Li, X.Q. Zeng, J. Dong, and C.Q. Zhai: Influence of heat treatment on microstructure and mechanical properties of Mg–10Gd–3Y–1.2Zn–0.4Zr alloy. Trans. Nonferrous Met. Soc. China 18, 117–121 (2008).

    Article  Google Scholar 

  3. I. Nakatsugawa, S. Kamado, Y. Kojima, R. Ninomiya, and K. Kubota: Corrosion of magnesium alloys containing rare earth elements. Corros. Rev. 16, 139–158 (1998).

    Article  CAS  Google Scholar 

  4. A.I. Anthony, S. Kamado, and Y. Kojima: Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42, 1206–1211 (2001).

    Article  Google Scholar 

  5. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Precipitation in a Mg–10Gd–3Y–0.4Zr (wt%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 421, 309–313 (2006).

    Article  CAS  Google Scholar 

  6. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy. J. Alloys Compd. 427, 316–323 (2007).

    Article  CAS  Google Scholar 

  7. I.A. Anyanwu, S. Kamado, and Y. Kojima: Platform science and technology for advanced magnesium alloys. Creep properties of Mg–Gd–Y–Zr alloys. Mater. Trans. 42, 1212–1218 (2001).

    Article  CAS  Google Scholar 

  8. J. Wang, J. Meng, D. Zhang, and D. Tang: Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Mater. Sci. Eng., A 456, 78–84 (2007).

    Article  Google Scholar 

  9. M. Sun, G. Wu, W. Wang, and W. Ding: Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Mater. Sci. Eng., A 523, 145–151 (2009).

    Article  Google Scholar 

  10. H.R. Jafari Nodooshan, G. Wu, W. Liu, G. Wei, Y. Li, and S. Zhang: Effect of Gd content on high temperature mechanical properties of Mg–Gd–Y–Zr alloy. Mater. Sci. Eng., A 651, 840–847 (2016).

    Article  Google Scholar 

  11. T. Kawabata, K. Matsuda, S. Kamado, Y. Kojima, and S. Ikeno: HRTEM observation of the precipitates in Mg–Gd–Y–Zr alloy. Mater. Sci. Forum 419–422, 303–306 (2003).

    Article  Google Scholar 

  12. H. Zhang, J. Fan, L. Zhang, G. Wu, W. Liu, W. Cui, and S. Feng: Effect of heat treatment on microstructure, mechanical properties and fracture behaviors of sand-cast Mg–4Y–3Nd–1Gd–0.2Zn–0.5Zr alloy. Mater. Sci. Eng., A 677, 411–420 (2016).

    Article  CAS  Google Scholar 

  13. Z. Luo, S. Zhang, Y. Tang, and D. Zhao: Microstructures of Mg–Zn–Zr-RE alloys with high RE and low Zn contents. J. Alloys Compd. 209, 275–278 (1994).

    Article  CAS  Google Scholar 

  14. T. Honma, T. Ohkubo, S. Kamado, and K. Hono: Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater. 55, 4137–4150 (2007).

    Article  CAS  Google Scholar 

  15. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Rapidly solidified powder metallurgy magnesium alloys with novel mechanical properties. Mater. Sci. Forum 13, 529–534 (2002).

    Article  Google Scholar 

  16. S. Zhang, W. Liu, X. Gu, C. Lu, G. Yuan, and W. Ding: Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg–14Gd–3Y–1.8Zn–0.5Zr alloy. J. Alloys Compd. 557, 91–97 (2013).

    Article  CAS  Google Scholar 

  17. D. Li, X. Zeng, J. Dong, C. Zhai, and W. Ding: Microstructure evolution of Mg–10Gd–3Y–1.2Zn–0.4Zr alloy during heat-treatment at 773 K. J. Alloys Compd. 468, 164–169 (2009).

    Article  CAS  Google Scholar 

  18. S. Zhang, G.Y. Yuan, C. Lu, and W.J. Ding: The relationship between (Mg,Zn)3RE phase and 14H-LPSO phase in Mg–Gd–Y–Zn–Zr alloys solidified at different cooling rates. J. Alloys Compd. 509, 3515–3521 (2011).

    Article  CAS  Google Scholar 

  19. Y. Gao, Q. Wang, J. Gu, Y. Zhao, Y. Tong, and D. Yin: Comparison of microstructure in Mg–10Y–5Gd–0.5Zr and Mg–10Y–5Gd–2Zn–0.5Zr alloys by conventional casting. J. Alloys Compd. 477, 374–378 (2009).

    Article  CAS  Google Scholar 

  20. K. Liu, J. Zhang, G. Su, D. Tang, L.L. Rokhlin, F.M. Elkin, and J. Meng: Influence of Zn content on the microstructure and mechanical properties of extruded Mg–5Y–4Gd–0.4Zr alloy. J. Alloys Compd. 481, 811–818 (2009).

    Article  CAS  Google Scholar 

  21. Y.M. Zhu, A.J. Morton, and J.F. Nie: Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60, 6562–6572 (2012).

    Article  CAS  Google Scholar 

  22. Y. Chino, M. Mabuchi, S. Hagiwara, H. Iwasaki, A. Yamamoto, and H. Tsubakino: Novel equilibrium two phase Mg alloy with the long-period ordered structure. Scr. Mater. 51, 711–714 (2004).

    Article  CAS  Google Scholar 

  23. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr. Mater. 48, 997–1002 (2003).

    Article  CAS  Google Scholar 

  24. K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, and Y. Kojima: Alloy development of high toughness Mg–Gd–Y–Zn–Zr alloys. Mater. Trans. 47, 1066–1070 (2006).

    Article  CAS  Google Scholar 

  25. S. Huang, J. Wang, F. Hou, X. Huang, and F. Pan: Effect of Gd and Y contents on the microstructural evolution of long period stacking ordered phase and the corresponding mechanical properties in Mg–Gd–Y–Zn–Mn alloys. Mater. Sci. Eng., A 612, 363–370 (2014).

    Article  CAS  Google Scholar 

  26. J.Y. Lee, D.H. Kim, H.K. Lim, and D.H. Kim: Effects of Zn/Y ratio on microstructure and mechanical properties of Mg–Zn–Y alloys. Mater. Lett. 59, 3801–3805 (2005).

    Article  CAS  Google Scholar 

  27. Y. Liu, G. Yuan, S. Zhang, X. Zhang, C. Lu, and W. Ding: Effects of Zn/Gd ratio and content of Zn, Gd on phase constitutions of Mg alloys. Mater. Trans. 49, 941–944 (2008).

    Article  CAS  Google Scholar 

  28. Z. Su, C. Liu, and Y. Wan: Microstructures and mechanical properties of high performance Mg–4Y–2.4Nd–0.2Zn–0.4Zr alloy. Mater. Des. 45, 466–472 (2013).

    Article  CAS  Google Scholar 

  29. Y.H. Kang, D. Wu, R.S. Chen, and E.H. Han: Microstructures and mechanical properties of the age hardened Mg–4.2Y–2.5Nd–1Gd–0.6Zr (WE43) microalloyed with Zn. J. Magnesium Alloys 2, 109–115 (2014).

    Article  CAS  Google Scholar 

  30. X.B. Liu, R.S. Chen, and E.H. Han: Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 465, 232–238 (2008).

    Article  CAS  Google Scholar 

  31. X.H. Shao, Z.Q. Yang, and X.L. Ma: Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 58, 4760–4771 (2010).

    Article  CAS  Google Scholar 

  32. W.J. Ding, Y.J. Wu, L.M. Peng, X.Q. Zeng, G.Y. Yuan, and D.L. Lin: Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg–Gd–Zn–Zr alloys. J. Mater. Res. 24, 1842–1854 (2011).

    Article  Google Scholar 

  33. X. Gao, B.C. Muddle, and J.F. Nie: Transmission electron microscopy of Zr–Zn precipitate rods in magnesium alloys containing Zr and Zn. Philos. Mag. Lett. 89, 33–43 (2009).

    Article  CAS  Google Scholar 

  34. G. Sha, H.M. Zhu, J.W. Liu, C.P. Luo, Z.W. Liu, and S.P. Ringer: Hydrogen-induced decomposition of Zr-rich cores in an Mg–6Zn–0.6Zr–0.5Cu alloy. Acta Mater. 60, 5615–5625 (2012).

    Article  CAS  Google Scholar 

  35. Y.J. Wu, L.M. Peng, X.Q. Zeng, D.L. Lin, and W.J. Ding: Formation of a novel X Phase in Mg–Gd–Zn–Zr alloy. Mater. Sci. Forum 654–656, 623–626 (2010).

    Article  Google Scholar 

  36. A. Datta, U.V. Waghmare, and U. Ramamurty: Structure and stacking faults in layered Mg–Zn–Y alloys: A first-principles study. Acta Mater. 56, 2531–2539 (2008).

    Article  CAS  Google Scholar 

  37. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Effects of zinc on creep strength and deformation substructures in Mg–Y alloy. Mater. Sci. Eng., A 387–389, 706–709 (2004).

    Article  Google Scholar 

  38. L. Gao, R.s. Chen, and E.h. Han: Fracture behavior of high strength Mg–Gd–Y–Zr magnesium alloy. Trans. Nonferrous Met. Soc. China 20, 1217–1221 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by National Key Research and Development Program of China (No. 2016YFB0701205), National Natural Science Foundation of China (No. 51771115), Science Innovation Foundation of Shanghai Academy of Spaceflight Technology (Nos. SAST2015047 and SAST2016048), and Research Program of Joint Research Center of Advanced Spaceflight Technologies (Nos. USCAST2015-25 and USCAST2016-18).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wencai Liu or Guohua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Xiao, L., Liu, W. et al. Effect of Zn addition on microstructure and mechanical properties of Mg–9Gd–3Y–0.5Zr alloy. Journal of Materials Research 33, 733–744 (2018). https://doi.org/10.1557/jmr.2017.458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.458

Navigation