Skip to main content
Log in

Terahertz generation in ripple density hot plasma under the influence of static magnetic field

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A systematic numerical study on terahertz (THz) radiation by the interaction of laser with under-dense plasma with the inclusion of a variety of laser and plasma parameters is reported in the present communication. We have included the effect of the externally applied transverse magnetostatic field on the THz generation scheme reported by Mehta et al. (Laser Phys. Lett. 15(1):045403, 2019) in 2019. The externally applied magnetostatic field can be utilized to enhance the nonlinear coupling present between the plasma and electromagnetic waves as well as to control the various parameters of the emitted energy-efficient THz radiations. We demonstrate that the resonance attributed to nonlinear effects and broadening the emission spectra significantly can be tuned by varying the value of the externally applied magnetostatic field on the p-polarized laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. A. Mehta, N. Kant, S. Vij, Generation of terahertz (THz) radiation by p-polarized lasers beating in hot plasma with surface density ripple. Laser Phys. Lett. 15(1), 045403 (2019)

    Article  ADS  Google Scholar 

  2. Y.C. Shen, T. Lo, P.F. Taday, B.E. Cole, W.R. Tribe, M.C. Kemp, Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86(1), 241116 (2005)

    Article  ADS  Google Scholar 

  3. S. Kumar, N. Kant, V. Thakur, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98, 085506 (2023). https://doi.org/10.1088/1402-4896/ace1ae

    Article  ADS  Google Scholar 

  4. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant excitation of THz radiations by the interaction of amplitude-modulated laser beams with an anharmonic CNTs in the presence of static D.C. electric and magnetic fields. Chin. J. Phys. 78, 453–462 (2022)

    Article  MathSciNet  Google Scholar 

  5. V. Thakur, S. Vij, N. Kant, S. Kumar, THz generation by propagating lasers through magnetized SWCNTs. Indian J. Phys. 97, 2191–2196 (2023). https://doi.org/10.1007/s12648-022-02575-x

    Article  ADS  Google Scholar 

  6. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1(2), 97 (2007)

    Article  ADS  Google Scholar 

  7. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. M€ahrlein, T. Dekorsy, and R. Huber, Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5(1), 31 (2011)

    Article  ADS  Google Scholar 

  8. M.Y. Glyavin, A.G. Luchinin, G.Y. Golubiatnikov, Generation of 1.5 Kw, 1THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys. Rev. Lett. 100(1), 015101 (2008)

    Article  ADS  Google Scholar 

  9. S. Kumar, S. Vij, N. Kant, V. Thakur, Nonlinear interaction of amplitude-modulated gaussian laser beam with the anharmonic magnetized and rippled CNTs: THz generation. Braz. J. Phys. 53, 37 (2023)

    Article  ADS  Google Scholar 

  10. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112 (2022)

    Article  Google Scholar 

  11. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt. Quant. Electron. 55, 281 (2023)

    Article  Google Scholar 

  12. V. Thakur, N. Kant, S. Kumar, THz field enhancement under the influence of cross-focused laser beams in the m-CNTs. Trends Sci. 20(6), 5284 (2023). https://doi.org/10.48048/tis.2023.5284

    Article  Google Scholar 

  13. V. Thakur and S. Kumar, THz generation by nonlinear mixing of obliquely incident laser beams in the closely-spaced assemblage of anharmonic upright CNTs. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01558-3

    Article  Google Scholar 

  14. P. Varshney, A.P. Singh, M. Kundu et al., Laser intensity profile based terahertz field enhancement from a mixture of nano-particles embedded in a gas. Opt. Quant. Electron. 54, 222 (2022). https://doi.org/10.1007/s11082-022-03597-9

    Article  Google Scholar 

  15. B. Zhang, Z. Ma, J. Ma, X. Wu, C. Ouyang, D. Kong, T. Hong, X. Wang, P. Yang, L. Chen, Y. Li, J. Zhang, 1.4-mJ high energy terahertz radiation from lithium niobates. Laser Photon. Rev. 15, 2000295 (2021)

    Article  ADS  Google Scholar 

  16. Z.B. Zaccardi, I.C. Tangen, G.A. Valdivia-Berroeta, C.B. Bahr, K.C. Kenney, C. Rader, M.J. Lutz, B.P. Hunter, D.J. Michaelis, J.A. Johnson, Enabling high-power, broadband THz generation with 800-nm pump wavelength. Opt. Express 29, 38084–38094 (2021)

    Article  ADS  Google Scholar 

  17. L. Guiramand, J.E. Nkeck, X. Ropagnol, T. Ozaki, F. Blanchard, Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal. Photon. Res. 10, 340–346 (2022)

    Article  Google Scholar 

  18. H. Hamster, A. Sullivan, S. Gordon, W. White, R.W. Falcone, Subpicosecond electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725 (1993)

    Article  ADS  Google Scholar 

  19. J. Penano, P. Sprangle, B. Hafizi, D. Gordon, P. Serafim, Terahertz generation in plasmas using two-color laser pulses. Phys. Rev. E 81(2), 026407 (2010)

    Article  ADS  Google Scholar 

  20. S. Kumar, S. Vij, N. Kant, A. Mehta, V. Thakur, Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. Euro. Phys. J. Plus 136, 148 (2021)

    Article  Google Scholar 

  21. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astr. 43, 30 (2021)

    Article  ADS  Google Scholar 

  22. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2155330

    Article  Google Scholar 

  23. S. Kumar, N. Kant, V. Thakur, Electric field-induced strong THz emission by beating two filamented spatial-gaussian lasers in the pre-existing underdense magnetized plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01334-3

    Article  Google Scholar 

  24. L. Bhasin, V.K. Tripathi, Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasmas 16(1), 103105 (2009)

    Article  ADS  Google Scholar 

  25. T. Loffler, H.G. Roskos, Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma. J. Appl. Phys. 91(1), 2611 (2002)

    Article  ADS  Google Scholar 

  26. R. Mclaughlin, A. Corchia, M.B. Johnson et al., Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field. Appl. Phys. Lett. 76(15), 2038 (2000)

    Article  ADS  Google Scholar 

  27. M. Manouchehrizadeh, D. Dorranian, Effect of obliqueness of external magnetic field on the characteristics of magnetized plasma wakefield. J. Theo. Appl. Phys. 7, 43 (2013)

    Article  Google Scholar 

  28. A. Mehta, J. Rajput, N. Kant, Effect of frequency-chirped laser pulses on terahertz radiation generation in magnetized plasma. Laser Phys. 29(1), 095405 (2019)

    Article  ADS  Google Scholar 

  29. C.C. Kuo, C.H. Pai, M.W. Lin, K.H. Lee, J.Y. Lin, J. Wang, S.Y. Chen, Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98(1), 033901 (2007)

    Article  ADS  Google Scholar 

  30. S. Hazra, T.K. Chini, M.K. Sanyal, J. Grenzer, U. Pietsch, Ripple structure of crystalline layers in ion-beam-induced Si wafers. Phys. Rev. B 70, 121307(R) (2004)

    Article  ADS  Google Scholar 

  31. B.D. Layer, A. York, T.M. Antonson, S. Varma, Y.H. Chen, Y. Leng, H.M. Milchberg, Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett. 99, 035001 (2007)

    Article  ADS  Google Scholar 

  32. C. Tailliez, X. Davoine, A. Debayle, L. Gremillet, L. Bergé, Terahertz pulse generation by strongly magnetized, laser-created plasmas. Phys. Rev. Lett. 128, 174802 (2022)

    Article  ADS  Google Scholar 

  33. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotubes array. Plasmonics 17, 381–388 (2021)

    Article  Google Scholar 

  34. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of spatial-Gaussian lasers with the magnetized CNTs in the presence of D.C. electric field and enhanced THz emission. Phys. Scr. 98, 015015 (2022)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SK was involved in derivation, methodology, numerical calculations, numerical analysis, graphical analysis, analytical modeling, graph plotting, original draft preparation, and result writing. VT was responsible for numerical analysis, result discussion, and reviewing.

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V., Kumar, S. Terahertz generation in ripple density hot plasma under the influence of static magnetic field. J Opt (2024). https://doi.org/10.1007/s12596-023-01588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01588-x

Keywords

Navigation