Skip to main content
Log in

Inkjet printing of yttria stabilized zirconia nano particles on metal substrates

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper describes a novel methodology of coating Yttria stabilized Zirconia (YSZ) suspensions on AISI316L steel substrates and involves a micro structural investigation to understand the sintering behavior. Nano sized particles are used at lowering of sintering temperature. Nano particle suspension inks prepared through high energy milling process is visibly stable due to ionic charge carriers in binder and solvent. Deposition of suspended material was done through inkjet printing (IJP) and spin coating (SC) processes. Print head offset in X and Y directions lead to fabrication of homogeneous layers. Inkjet printing at elevated temperatures is useful especially in controlling nano particle seepage through porous substrates. Low temperature sintering of suspended particles in the ink leads to development of porous YSZ films due to the presence of carrier solvent and binder/dispersants in the ink. Sintered films exhibit completely stable tetragonal zirconia with uniformly porous microstructure. Pore sizes of 50 nm and 100 nm have been reported at least for inkjet printed and spin coated films respectively. The homogeneity observed in pores of YSZ film is a typical characteristic of inkjet printing process which is attributed to the layer by layer stacking of nano particles during the deposition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

YSZ:

Yttria Stabilized Zirconia

m-ZrO2 :

Monoclinic Zirconia

t-ZrO2 :

Tetragonal Zirconia

c-ZrO2 :

Cubic Zirconia

IJP:

Inkjet Printing

DOD:

Drop on Demand

SC:

Spin coating

References

  1. Duwez, P., Brown, F. H., and Odell, F., “The Zirconia-Yttria System,” Journal of the Electrochemical Society, Vol. 98, No. 9, pp. 356–362, 1951.

    Article  Google Scholar 

  2. Scott, H., “Phase Relationships in the Yttria-Rich Part of the Yttria-Zirconia System,” Journal of Materials Science, Vol. 12, No. 2, pp. 311–316, 1977.

    Article  Google Scholar 

  3. Skaggs, S. R., “The ZrO2-Y2O System above 2000°C,” Ph.D. Thesis, New Mexico State University, 1972.

    Google Scholar 

  4. Chevalier, J. M., Gremillard, L., Virkar, A. V., and Clarke, D. R., “The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends,” Journal of the American Ceramic Society, Vol. 92, No. 9, pp. 1901–1920, 2009.

    Article  Google Scholar 

  5. Braue, W. and Mechnich, P., “Recession of an EB-PVDYSZ Coated Turbine Blade by CaSO4 and Fe, Ti-Rich CMAS-Type Deposits,” Journal of the American Ceramic Society, Vol. 94, No. 12, pp. 4483–4489, 2011.

    Article  Google Scholar 

  6. Domakonda, V. K. and Puli, R. K., “Application of Thermal Barrier Coatings in Diesel Engines: A Review,” Energy and Power, Vol. 2, No. 1, pp. 9–17, 2012.

    Article  Google Scholar 

  7. Chevalier, J., Deville, S., Münch, E., Jullian, R., and Lair, F., “Critical Effect of Cubic Phase on Aging in 3 mol% Yttria-Stabilized Zirconia Ceramics for Hip Replacement Prosthesis,” Biomaterials, Vol. 25, No. 24, pp. 5539–5545, 2004.

    Article  Google Scholar 

  8. Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., and Gauckler, L., “Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells,” Solid State Ionics, Vol. 131, No. 1, pp. 79–96, 2000.

    Article  Google Scholar 

  9. Wanzenberg, E., Tietz, F., Panjan, P., and Stöver, D., “Influence of Pre-and Post-Heat Treatment of Anode Substrates on the Properties of DC-Sputtered YSZ Electrolyte Films,” Solid State Ionics, Vol. 159, No. 1, pp. 1–8, 2003.

    Article  Google Scholar 

  10. Talebi, T., Raissi, B., and Maghsoudipour, A., “The Role of Addition of Water to Non-Aqueous Suspensions in Electrophoretically Deposited YSZ Films for SOFCS,” International Journal of Hydrogen Energy, Vol. 35, No. 17, pp. 9434–9439, 2010.

    Article  Google Scholar 

  11. Kucuk, A., Berndt, C., Senturk, U., Lima, R., and Lima, C., “Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings. I: Four Point Bend Test,” Materials Science and Engineering: A, Vol. 284, No. 1, pp. 29–40, 2000.

    Article  Google Scholar 

  12. Bernay, C., Ringued, A., Colomban, P., Lincot, D., and Cassir, M., “Yttria-Doped Zirconia Thin Films Deposited by Atomic Layer Deposition Ald: A Structural, Morphological and Electrical Characterisation,” Journal of Physics and Chemistry of Solids, Vol. 64, No. 9, pp. 1761–1770, 2003.

    Article  Google Scholar 

  13. Leng, Y. J., Chan, S. H., Khor, K. A., Jiang, S. P., and Cheang, P., “Effect of Characteristics of Y2O3/ZrO2 Powders on Fabrication of Anode-Supported Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 117, No. 1, pp. 26–34, 2003.

    Article  Google Scholar 

  14. Dahl, P., Kaus, I., Zhao, Z., Johnsson, M., Nygren, M., et al., “Densification and Properties of Zirconia Prepared by Three Different Sintering Techniques,” Ceramics International, Vol. 33, No. 8, pp. 1603–1610, 2007.

    Article  Google Scholar 

  15. Tucker, M. C., Lau, G. Y., Jacobson, C. P., Visco, S. J., and De Jonghe, L. C., “Cu-YSZ Cermet Solid Oxide Fuel Cell Anode Prepared by High-Temperature Sintering,” Journal of Power Sources, Vol. 195, No. 10, pp. 3119–3123, 2010.

    Article  Google Scholar 

  16. Pascual, C., Jurado, J., and Duran, P., “Electrical Behaviour of Doped-Yttria Stabilized Zirconia Ceramic Materials,” Journal of Materials Science, Vol. 18, No. 5, pp. 1315–1322, 1983.

    Article  Google Scholar 

  17. Buffat, P. and Borel, J. P., “Size Effect on the Melting Temperature of Gold Particles,” Physical Review A, Vol. 13, No. 6, pp. 2287, 1976.

    Article  Google Scholar 

  18. Moon, K.-S., Dong, H., Maric, R., Pothukuchi, S., Hunt, A., et al., “Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications,” Journal of Electronic Materials, Vol. 34, No. 2, pp. 168–175, 2005.

    Article  Google Scholar 

  19. Suciu, C., Hoffmann, A. C., and Kosinski, P., “Obtaining YSZ Nanoparticles by the Sol-Gel Method with Sucrose and Pectin as Organic Precursors,” Journal of Materials Processing Technology, Vol. 202, No. 1, pp. 316–320, 2008.

    Article  Google Scholar 

  20. Zou, G., Yan, J., Mu, F., Wu, A., Ren, J., et al., “Low Temperature Bonding of Cu Metal Through Sintering of Ag Nanoparticles for High Temperature Electronic Application,” Open Surface Science Journal, Vol. 3, pp. 70–75, 2011.

    Article  Google Scholar 

  21. Takagi, M., “Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films,” Journal of the Physical Society of Japan, Vol. 9, No. 3, pp. 359–363, 1954.

    Article  Google Scholar 

  22. Wang, C., Tomov, R. I., Kumar, R. V., and Glowacki, B. A., “Inkjet Printing of Gadolinium-Doped Ceria Electrolyte on Nio-YSZ Substrates for Solid Oxide Fuel Cell Applications,” Journal of Materials Science, Vol. 46, No. 21, pp. 6889–6896, 2011.

    Article  Google Scholar 

  23. Fasaki, I., Siamos, K., Arin, M., Lommens, P., Van Driessche, I., et al., “Ultrasound Assisted Preparation of Stable Water-based Nanocrystalline TiO2 Suspensions for Photocatalytic Applications of Inkjet-Printed Films,” Applied Catalysis A: General, Vols. 411-412, pp. 60–69, 2012.

    Article  Google Scholar 

  24. Wang, C., Hopkins, S. C., Tomov, R. I., Kumar, R. V., and Glowacki, B. A., “Optimisation of CGO Suspensions for Inkjet-Printed SOFC Electrolytes,” Journal of the European Ceramic Society, Vol. 32, No. 10, pp. 2317–2324, 2012.

    Article  Google Scholar 

  25. Rahul, S. H., Balasubramanian, K., and Venkatesh, S., “Inkjet Printing of 5 Mol% YSZ Nano Particle Suspensions on Porous a-Al2O3 Substrates,” Materials Today: Proceedings, Vol. 2, No. 4, pp. 3552–3564, 2015.

    Article  Google Scholar 

  26. Rahul, S. H., Balasubramanian, K., and Venkatesh, S., “Inkjet Printing for Fabrication of Porous Films,” International Journal on Mechanical Engineering and Robotics, Vol. 3, No. 3, pp. 1–6, 2015.

    Google Scholar 

  27. Tomov, R. I., Krauz, M., Jewulski, J., Hopkins, S. C., Kluczowski, J. R., et al., “Direct Ceramic Inkjet Printing of Yttria-Stabilized Zirconia Electrolyte Layers for Anode-Supported Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 195, No. 21, pp. 7160–7167, 2010.

    Article  Google Scholar 

  28. Esposito, V., Gadea, C., Hjelm, J., Marani, D., Hu, Q., et al., “Fabrication of Thin Yttria-Stabilized-Zirconia Dense Electrolyte Layers by Inkjet Printing for High Performing Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 273, pp. 89–95, 2015.

    Article  Google Scholar 

  29. AZO Network, “Stainless Steel-High Temperature Resistance,” http://www.azom.com/article.aspx?ArticleID=1175 (Accessed 12 OCT 2015)

  30. Kumar, P., Kapur, P. C., and Saraf, D. N., “Effect of Zeta Potential on Apparent Viscosity of Settling Suspensions,” Colloid and Polymer Science, Vol. 253, No. 9, pp. 738–743, 1975.

    Article  Google Scholar 

  31. Lim, T., Yang, J., Lee, S., Chung, J., and Hong, D., “Deposit Pattern of Inkjet Printed Pico-Liter Droplet,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 6, pp. 827–833, 2012.

    Article  Google Scholar 

  32. Fuller, S. B., Wilhelm, E. J., and Jacobson, J. M., “Ink-Jet Printed Nanoparticle Microelectromechanical Systems,” Journal of Microelectromechanical Systems, Journal of, Vol. 11, No. 1, pp. 54–60, 2002.

    Article  Google Scholar 

  33. Rahman, K., Khan, A., Nam, N. M., Choi, K. H., and Kim, D.-S., “Study of Drop-on-Demand Printing through Multi-Step Pulse Voltage,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 4, pp. 663–669, 2011.

    Article  Google Scholar 

  34. Williamson, G. K. and Hall, W. H., “X-ray Line Broadening from Filed Aluminium and Wolfram,” Acta Metallurgica, Vol. 1, No. 1, pp. 22–31, 1953.

    Article  Google Scholar 

  35. Iwashita, N., Park, C. R., Fujimoto, H., Shiraishi, M., and Inagaki, M., “Specification for a Standard Procedure of X-ray Diffraction Measurements on Carbon Materials,” Carbon, Vol. 42, No. 4, pp. 701–714, 2004.

    Article  Google Scholar 

  36. Rehani, B. R., Joshi, P., Lad, K. N., and Pratap, A., “Crystallite Size Estimation of Elemental and Composite Silver Nano-Powders using XRD Principles,” Indian Journal of Pure and Applied Physics, Vol. 44, No. 2, pp. 157–161, 2006.

    Google Scholar 

  37. Cullity, B. D., “Elements of X-ray Diffraction,” Addison-Wesley Publishing Company, Inc., pp. 264, 431, 1956.

    Google Scholar 

  38. Mosiadz, M., Tomov, R., Hopkins, S., Martin, G., Hardeman, D., et al., “Inkjet Printing of Ce0.8Gd0.2O2 Thin Films on Ni-5% W Flexible Substrates,” Journal of Sol-Gel Science and Technology, Vol. 54, No. 2, pp. 154–164, 2010.

    Article  Google Scholar 

  39. Yu, H.-H. and Hutchinson, J. W., “Delamination of Thin Film Strips,” Thin Solid Films, Vol. 423, No. 1, pp. 54–63, 2003.

    Article  Google Scholar 

  40. Buckel, W., “Internal Stresses,” Journal of Vacuum Science and Technology, Vol. 6, No. 4, pp. 606–609, 1969.

    Article  Google Scholar 

  41. Hoffman, R. W., “Stresses in Thin Films: The Relevance of Grain Boundaries and Impurities,” Thin Solid Films, Vol. 34, No. 2, pp. 185–190, 1976.

    Article  Google Scholar 

  42. Nix, W. D. and Clemens, B. M., “Crystallite Coalescence: A Mechanism for Intrinsic Tensile Stresses in Thin Films,” Journal of Materials Research, Vol. 14, No. 8, pp. 3467–3473, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Rahul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, S.H., Balasubramanian, K. & Venkatesh, S. Inkjet printing of yttria stabilized zirconia nano particles on metal substrates. Int. J. Precis. Eng. Manuf. 16, 2553–2561 (2015). https://doi.org/10.1007/s12541-015-0327-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-015-0327-3

Keywords

Navigation