Skip to main content
Log in

Two-Step Sintering Improved Compaction of Electrophoretic-Deposited YSZ Coatings

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Two-step sintering is proposed to enhance the compactness and phase stability of yttria-stabilized zirconia (YSZ) coating on Inconel 625. The sintering treatment is denoted as low step (LS), low-first step (LFS), high-first step (HFS), and high step (HS). Low and high refer to 750 and 1200 °C, respectively. The YSZ layer was investigated using a scanning electron microscope, x-ray diffractometer, and electron backscattered diffractometer. The results revealed that three relatively compact and uniform layers consisting of Y-ZrO2 (~20 μm) and Fe2O3 (~2 μm) and Cr2O3 (~10 μm) were developed as a result of LFS treatment. The LFS treatment triggered optimum ZrO2 grain growth and the formation of the thermally grown oxides. The LS treatment was not sufficient to induce grain recrystallization and coating compaction. HFS and HS treatment resulted in a higher coating porosity and induced microcracks in the coatings. A nearly balanced fraction of 58:42 for the monoclinic and tetragonal ZrO2 phase was obtained in the LFS coating. The coating exhibited the highest hardness of 1027.10 HV, the best adhesion strength, and the lowest thermal conductivity of 4.73 W/mK. The LFS treatment is beneficial in obtaining a compact YSZ layer with high phase stability and low thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Sampath, U. Schulz, M.O. Jarligo, and S. Kuroda, Processing Science of Advanced Thermal-Barrier Systems, MRS. Bull., 2012, 37, p 903–910.

    Article  CAS  Google Scholar 

  2. B. Alavi, H. Aghajani, and A. Rasooli, Electrophoretic Deposition Of Electroless Nickel Coated YSZ Core-Shell Nanoparticles on a Nickel Based Superalloy, J. Eur. Ceram. Soc., 2019, 39, p 2526–2534.

    Article  CAS  Google Scholar 

  3. O. Khanali, S. Baghshahi, and M. Rajabi, Fabrication and Characterization of YSZ/Al2O3 Nano-Composite Coatings on Inconel by Electrophoretic Deposition, J. Mater. Res., 2017, 32, p 3402–3408.

    Article  CAS  Google Scholar 

  4. M. Bai, F. Guo, and P. Xiao, Fabrication of Thick YSZ Thermal Barrier Coatings Using Electrophoretic Deposition, Ceram. Int., 2014, 40, p 16611–16616.

    Article  CAS  Google Scholar 

  5. B. Lv, H. Xie, R. Xu, X. Fan, W. Zhang, and T.J. Wang, Effects of Sintering and Mixed Oxide Growth on the Interface Cracking of Air-Plasma-Sprayed Thermal Barrier Coating System at High Temperature, Appl. Surf. Sci., 2016, 360, p 461–469.

    Article  CAS  Google Scholar 

  6. U. Schulz, Phase Transformation in EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings during Annealing, J Am. Ceram. Soc., 2000, 83, p 904–910.

    Article  CAS  Google Scholar 

  7. F. Guo, Yttria-Stabilized Zirconia for Application in Thermal Barrier Coatings, The University of Manchester (United Kingdom) ProQuest Dissertations Publishing, 2012. https://www.proquest.com/openview/5db2d907eb5d75eea51758bfb9f34cf4/1?pq-origsite=gscholar&cbl=51922.

  8. F. Al Afghani and A. Anawati, Plasma Electrolytic Oxidation of Zircaloy-4 in a Mixed Alkaline Electrolyte, Surf. Coat. Technol., 2021, 426, p 127786.

    Article  CAS  Google Scholar 

  9. L. Besra and M. Liu, A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD), Prog. Mater. Sci., 2007, 52, p 1–61.

    Article  CAS  Google Scholar 

  10. B. Baufeld, O. van der Biest, and H.J. Rätzer-Scheibe, Lowering the Sintering Temperature for EPD Coatings by Applying Reaction Bonding, J. Eur. Ceram. Soc., 2008, 28, p 1793–1799.

    Article  CAS  Google Scholar 

  11. I. Zhitomirsky and L. Gal-Or, Electrophoretic Deposition of Hydroxyapatite, J. Mater. Sci. Mater. Med., 1997, 8, p 213–219.

    Article  CAS  Google Scholar 

  12. M. Bai, F. Guo, and P. Xiao, Fabrication of Thick YSZ Thermal Bather Coatings Using Electrophoretic Deposition, Ceram. Int., 2014, 40, p 16611–16616.

    Article  CAS  Google Scholar 

  13. O.O. Van Der Biest and L.J. Vandeperre, Electrophoretic Deposition of Materials, Annu. Rev. Mater. Sci., 1999, 29, p 327–352.

    Article  Google Scholar 

  14. X. Meng, T.Y. Kwon, and K.H. Kim, Hydroxyapatite Coating by Electrophoretic Deposition at Dynamic Voltage, Dent. Mater. J., 2008, 27, p 666–671.

    Article  CAS  Google Scholar 

  15. H.K. Bowen and T.J. Garinoa, Deposition and Sintering of Particle Films on a Rigid Substrate, J. Am. Ceram. Soc., 1987, 317, p 315–317.

    Google Scholar 

  16. D.L. Johnson, Fundamentals of the Sintering of Ceramics, Mater. Sci. Res., 1978, 11, p 137–149.

    CAS  Google Scholar 

  17. K.C. Radford and R.J. Bratton, Zirconia Electrolyte Cells - Part 1 Sintering Studies, J. Mater. Sci., 1979, 14, p 59–65.

    Article  CAS  Google Scholar 

  18. C. Ji, I.P. Shapiro, and P. Xiao, Fabrication of Yttria-Stabilized-Zirconia Coatings Using Electrophoretic Deposition: Effects of Agglomerate Size Distribution on Particle Packing, J. Eur. Ceram. Soc., 2009, 29, p 3167–3175.

    Article  CAS  Google Scholar 

  19. E.G. Kalinina, A.A. Efimov, and A.P. Safronov, Preparation of YSZ/Al2O3 Composite Coatings via Electrophoretic Deposition of Nanopowders, Inorg. Mater., 2016, 52, p 1301–1306.

    Article  CAS  Google Scholar 

  20. M.M.R. Boutz, A.J.A. Winnubst, F. Hartgers, and A.J. Burggraaf, Effect of Additives on Densification and Deformation of Tetragonal Zirconia, J. Mater. Sci., 1994, 29, p 5374–5382.

    Article  CAS  Google Scholar 

  21. Q.D. Wang, J. Peng, M.P. Liu, Y. Chen, W.J. Ding, M. Suéry, and J.J. Blandin, Microstructure and Mechanical Extruded Properties of Extruded AM50+xCa Magnesium Alloys, Mater. Sci. Forum., 2009, 488–489, p 119–122.

    Google Scholar 

  22. G. Štefanić, S. Musić, and R. Trojko, The Influence of Thermal Treatment on the Phase Development in HfO 2-Al 2O 3 and ZrO 2-Al 2O 3 Systems, J. Alloys. Compd., 2005, 388, p 126–137.

    Article  Google Scholar 

  23. I.C. Cosentino, E.N.S. Muccillo, and R. Muccillo, The Influence of Fe2O3 in the Humidity Sensor Performance of ZrO2:TiO2-Based Porous Ceramics, Mater. Chem. Phys., 2007, 103, p 407–414.

    Article  CAS  Google Scholar 

  24. O. Khanali, S. Ariaee, M. Rajabi, and S. Baghshahi, An Investigation on the Properties of YSZ/Al2O3 Nanocomposite Coatings on Inconel by Electrophoretic Deposition, J. Compos. Mater., 2018, 52, p 81–89.

    Article  CAS  Google Scholar 

  25. U. Sutharsini, M. Thanihaichelvan, and R. Singh, Two-Step Sintering of Ceramics, Sintering of Functional Materials, 2018, p 3–22. https://www.intechopen.com/chapters/54691.

  26. M.J. Zamharir, H. Aghajani, and A.T. Tabrizi, Evaluation of Adhesion Strength of TiN Layer Applied on 316L Substrate by Electrophoretic Deposition, J. Aust. Ceram. Soc., 2021, 57, p 1219–1230. https://doi.org/10.1007/s41779-021-00621-1.

    Article  CAS  Google Scholar 

  27. Q.R. Hou, J. Gao, and S.J. Li, Adhesion and its Influence on Micro-Hardness of DLC and SiC Films, Eur. Phys. J. B., 1999, 8, p 493–496.

    Article  CAS  Google Scholar 

  28. P.J. Whalen, F. Reidinger, and R.F. Antrim, Prevention of Low-Temperature Surface Transformation by Surface Recrystallization in Yttria-Doped Tetragonal Zirconia, J. Am. Ceram. Soc, 1989, 72, p 319–321.

    Article  CAS  Google Scholar 

  29. H.W. Sheng, K. Lu, and E. Ma, Melting and Freezing Behavior Of Embedded Nanoparticles in Ball-Milled Al-10 wt.% M (M = In, Sn, Bi, Cd, Pb) Mixtures, Acta. Mater., 1998, 46, p 5195–5205.

    Article  CAS  Google Scholar 

  30. D.R. Clarke, C.G. Levi, and A.G. Evans, Enhanced Zirconia Thermal Barrier Coating Systems, Proc. Inst. Mech. Eng. Part. A. J. Power. Energy., 2006, 220, p 85–92.

    Article  CAS  Google Scholar 

  31. S.E. Redfern, R.W. Grimes, and R.D. Rawlings, The Hydroxylation of T-ZrO2 Surfaces, J. Mater. Chem., 2001, 11, p 449–455.

    Article  CAS  Google Scholar 

  32. P. Bindu and S. Thomas, Estimation of Lattice Strain in ZnO Nanoparticles: x-ray Peak Profile Analysis, J. Theor. Appl. Phys., 2014, 8, p 123–134.

    Article  Google Scholar 

  33. V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles, J. Theor. Appl. Phys., 2012 https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  34. F. Guo and P. Xiao, Effect of Fe 2O 3 Doping on Sintering of Yttria-Stabilized Zirconia, J. Eur. Ceram. Soc., 2012, 32, p 4157–4164.

    Article  CAS  Google Scholar 

  35. P. Li, I.-W. Chen, and J.E. Penner-Hahn, Effect of Dopants on Zirconia Stabilization—An x-ray Absorption Study: III, Charge-Compensating Dopants, J. Am. Ceram. Soc., 1994, 77, p 1289–1295.

    Article  CAS  Google Scholar 

  36. J.Z. Jiang, F.W. Poulsen, and S. Mørup, Structure and Thermal Stability of Nanostructured Iron-Doped Zirconia Prepared by High-Energy Ball Milling, J. Mater. Res., 1999, 14, p 1343–1352.

    Article  CAS  Google Scholar 

  37. S. Figueroa, J. Desimoni, P.C. Rivas, M.C. Caracoche, and O. De Sanctis, Local Structures in the ZrO2-15 mol.% Fe2O3 System Obtained by Ball Milling, J. Am. Ceram. Soc., 2006, 89, p 3759–3764.

    Article  CAS  Google Scholar 

  38. F.J. Berry, M.H. Loretto, and M.R. Smith, Iron-Zirconium Oxides: An Investigation of Structural Transformations by x-ray Diffraction, Electron Diffraction, and Iron-57 Mössbauer Spectroscopy, J. Solid. State. Chem., 1989, 83, p 91–99.

    Article  CAS  Google Scholar 

  39. F. CrespoPetit, Effect of Porosity on the Mechanical Properties of Zirconia Based Ceramics Obtained via 3d Printing, 2016, Bachelor thesis, Volume I, Universitat Politècnica de Catalunya (UPC), 2016 Open access at https://upcommons.upc.edu/bitstream/handle/2117/87702/Mem%c3%b2ria.pdf?sequence=1&isAllowed=y.

  40. D. Zhang, Z. Zhao, B. Wang, S. Li, and J. Zhang, Investigation of a New Type of Composite Ceramics for Thermal Barrier Coatings, Mater. Des., 2016, 112, p 27–33.

    Article  Google Scholar 

  41. M. Yashima and S. Tsunekawa, Structures and the Oxygen Deficiency of Tetragonal and Monoclinic Zirconium Oxide Nanoparticles, Acta. Crystallogr. Sect. B. Struct. Sci., 2006, 62, p 161–164.

    Article  Google Scholar 

  42. X. Li, K. Maute, M.L. Dunn, and R. Yang, Strain Effects on the Thermal Conductivity of Nanostructures, Phys. Rev. B., 2010 https://doi.org/10.1103/PhysRevB.81.245318

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Universitas Indonesia through PUTI Saintekes Grant No. NKB-4899/UN2.RST/HKP.05.00/2020. The author would like to acknowledge Research Center for Physics - Indonesian Institute of Sciences (P2F-LIPI) for the experimental and characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anawati Anawati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desiati, R.D., Anawati, A. & Sugiarti, E. Two-Step Sintering Improved Compaction of Electrophoretic-Deposited YSZ Coatings. J. of Materi Eng and Perform 31, 9888–9899 (2022). https://doi.org/10.1007/s11665-022-07004-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07004-y

Keywords

Navigation