Skip to main content
Log in

Inkjet printing of Ce0.8Gd0.2O2 thin films on Ni-5%W flexible substrates

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The successful inkjet printing of a cerium gadolinium oxide (Ce0.8Gd0.2O2) precursor solution on highly textured Ni-5%W is reported. A stable ink was synthesised from metal acetates and propionic acid with rheological properties suitable for inkjet printing and also the development of solid–liquid interface comparable with thin film formation by dip coating. Two different drop-on-demand print heads were used for deposition: a 16-nozzle piezoelectric cartridge and a single electromagnetic nozzle. Two different rastering patterns with different droplet sizes and spacing were compared. Thermogravimetry and X-ray diffractometry were used to study the thermal decomposition of the metal oxide precursors and to determine the shortest possible heat treatment of the deposited layers, potentially suitable for continuous large scale production. The results from X-ray diffraction show that the single phase Ce0.8Gd0.2O2 was obtained in all cases, but only piezoelectric inkjet printing with optimised drop overlapping produces a highly textured buffer layer. Optical micrographs and atomic force microscopy also indicate the good quality of deposited films after heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520

    Article  CAS  Google Scholar 

  2. Flytzani-Stephanopoulos M (2001) Nanostructured cerium oxide “ecocatalysts”. Mater Res Soc Bull 26:885–889

    CAS  Google Scholar 

  3. Corma A et al (2004) Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 3:389–393

    Article  ADS  Google Scholar 

  4. Steele BC (2000) Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 129:95–110

    Article  CAS  Google Scholar 

  5. Murray EP, Tsai T, Barnett SA (1999) A direct-methane fuel cell with a ceria-based anode. Nature 400:649–651

    Article  CAS  ADS  Google Scholar 

  6. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94

    Article  CAS  Google Scholar 

  7. Norton DP et al (1996) Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): an approach to superconducting tapes with high critical current density. Science 274:755–757

    Article  CAS  ADS  Google Scholar 

  8. MacManus-Driscoll JL (1998) Recent developments in conductor processing of high irreversibility field superconductors. Annu Rev Mater Sci 28:421–462

    Article  CAS  ADS  Google Scholar 

  9. Park C et al (1998) Bend strain tolerance of critical currents for YBa2Cu3O7 films deposited on rolled-textured (001) Ni. Appl Phys Lett 73:1904–1906

    Article  CAS  ADS  Google Scholar 

  10. Cavallaro A et al (2006) Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition. Adv Funct Mater 16:1363–1372

    Article  CAS  Google Scholar 

  11. Coll M et al (2008) Nanostructural control in solution-derived epitaxial Ce1−xGdxO2−y films. Nanotechnol 19:395–601

    Google Scholar 

  12. Norton DP (2004) Synthesis and properties of epitaxial electronic oxide thin-film materials. Mater Sci Eng R43:139–247

    CAS  Google Scholar 

  13. Sutoh Y et al (2004) Preparation of second buffer layers on IBAD tapes by PLD. Physica C 412–414:829–832

    Article  Google Scholar 

  14. Obradors X et al (2004) Chemical solution deposition: a path towards low cost coated conductors. Supercond Sci Technol 17:1055–1064

    Article  CAS  ADS  Google Scholar 

  15. Cavallaro A et al (2004) Chemical solution techniques for epitaxial growth of oxide buffer and YBa2Cu3O7 films. J Eur Ceram Soc 24:1831–1835

    Article  CAS  Google Scholar 

  16. Bhuiyan MS et al (2003) MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni–W substrates for YBCO coated conductors. Supercond Sci Technol 16:1305–1309

    Article  CAS  ADS  Google Scholar 

  17. Zhao Y et al (2007) Deposition of biaxially textured CeO2 thin films on single crystal and textured Ni5%W substrates using solution derived method. IEEE Trans Appl Supercond 17:3440–3442

    Article  CAS  ADS  Google Scholar 

  18. Coll M et al (2009) All chemical YBa2Cu3O7 superconducting multilayers: critical role of CeO2 cap layer flatness. J Mater Res 24:1446–1454

    Article  CAS  MathSciNet  ADS  Google Scholar 

  19. Akin Y et al (2003) Textured CeO2 thin films on nickel tape by sol–gel process. IEEE Trans Appl Supercond 13:2563–2566

    Article  CAS  Google Scholar 

  20. Celik E et al (1999) CeO2 buffer layers for YBCO: Growth and processing via sol–gel technique. IEEEE Trans Appl Supercond 9:2264–2267

    Article  Google Scholar 

  21. Engel S et al (2005) An all chemical solution deposition approach for the growth of highly textured CeO2 cap layers on La2Zr2O7-buffered long lengths of biaxially textured Ni–W substrates for YBCO-coated conductors. Supercond Sci Technol 18:1385–1390

    Article  CAS  ADS  Google Scholar 

  22. Akin Y et al (2003) Textured growth of multi-layered buffer layers on Ni tape by sol–gel process. IEEE Trans Appl Supercond 13:2673–2676

    Article  CAS  Google Scholar 

  23. Cloet V et al (2006) Sol–gel ink-jet printing technique for synthesis of buffer layers of coated conductors. Adv Sci Technol 47:153–158

    Article  CAS  Google Scholar 

  24. Arii T et al (2001) Thermal decomposition of cerium(III) acetate hydrate by a three-dimensional thermal analysis. Anal Sci 17:875–880

    Article  CAS  Google Scholar 

  25. Arii T et al (2002) Thermal decomposition of cerium(III) acetate studied with samplecontrolled thermogravimetric–mass spectrometry (SCTG—MS). J Eur Ceram Soc 22:2283–2289

    Article  CAS  Google Scholar 

  26. Knoth K et al (2005) La2Zr2O7 and Ce–Gd–O buffer layers for YBCO coated conductors using chemical solution deposition. Physica C 426–431:979–984

    Article  Google Scholar 

  27. Chen S et al (2005) Biaxially textured CeO2 seed layers and thin films on Ni substrates by chemical solution deposition using inorganic cerium nitrate as a precursor. Physica C 419:7–12

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Ian Hutchings (Inkjet Research Centre, Institute for Manufacturing, University of Cambridge) for access to the Dimatix Materials Printer and Dr. Mary Vickers (Department of Materials Science and Metallurgy, University of Cambridge) for help with pole figures. Mariusz Mosiadz would like to thank Dr. Nadia Stelmashenko (Department of Materials Science and Metallurgy, University of Cambridge) for help with atomic force microscopy. David Hardeman would like to thank Prof. Lindsay Greer (Department of Materials Science and Metallurgy, University of Cambridge) for the access to departmental facilities. This research was funded by the European Commission 6th Framework Programme (MRTN-CT-2006-035619), Marie Curie Actions, NESPA project (NanoEngineered Superconductors for Power Application) and partially supported by the European Commission 7th Framework Programme (EC-FP7-NMP-2007-SMALL-1) EFECTS (Efficient Environmental-Friendly Electro-ceramics Coating Technology and Synthesis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mosiadz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosiadz, M., Tomov, R.I., Hopkins, S.C. et al. Inkjet printing of Ce0.8Gd0.2O2 thin films on Ni-5%W flexible substrates. J Sol-Gel Sci Technol 54, 154–164 (2010). https://doi.org/10.1007/s10971-010-2170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2170-4

Keywords

Navigation