Skip to main content
Log in

Comparison of biventricular ejection fractions using cadmium-zinc-telluride SPECT and planar equilibrium radionuclide angiography

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

We compared biventricular ejection fractions (EFs) from gated blood-pool single-photon emission computed tomography (SPECT) using a cadmium-zinc-telluride camera (CZT-SPECT) with planar equilibrium radionuclide angiography (ERNA) using a NaI gamma camera (NaI-planar). We also evaluated whether imaging time can be reduced without compromising image quality using the CZT camera.

Methods

Forty-eight patients underwent NaI-planar and CZT-SPECT on the same day. CZT-SPECT datasets were re-projected at an LAO orientation similar to ERNA acquisition, forming CZT-repro planar datasets. The resulting biventricular volumetric measurements and EFs were compared.

Results

LVEF calculated from CZT-SPECT and CZT-repro correlated better with NaI-planar (r = 0.93 and 0.99, respectively) than RVEF (r = 0.76 and 0.82, respectively). Excellent intra-class correlation and low bias in intra-observer comparisons were observed for the biventricular EFs derived from three datasets. A wider limit of agreement in CZT-SPECT-derived LVEFs, lower correlation and significant bias for NaI-planar, and CZT-repro-derived RVEFs was found in the inter-observer analyses. Nonetheless, the imaging time can be reduced to 4 minutes without increasing variability in EFs using the CZT camera (P = NS).

Conclusions

LVEFs calculated from CZT-SPECT and CZT-repro correlated well with NaI-planar. CZT camera may reduce imaging time while preserving image quality in the assessment of biventricular EFs.

Resumen

Antecedentes

Se compararon las fracciones de eyección (FsE) bi ventriculares de la ventriculografía SPECT (single photon emission computed tomography, por sus siglas en ingles) utilizando una cámara de Cadmio-Zinc-Teluro (CZT-SPECT) y de la Ventriculografia Radioisotópica Planar en Equilibrio (VRIE) utilizando una gammacámara de NaI (NaI-Planar). También se evaluó si el tiempo de adquisición de las imágenes se puede reducir sin comprometer la calidad de imagen mediante la cámara CZT.

Métodos

Cuarenta y ocho pacientes fueron sometidos a un estudio de VRIE NaI-planar y un estudio de CZT-SPECT el mismo día. Los datos del CZT-SPECT fueron re-proyectados en OAI similar a la adquisición de la VRIE, formando conjuntos de datos planares CZT-repro. Las mediciones volumétricas bi-ventriculares resultantes y las fracciones de expulsión (FsE) fueron comparadas.

Resultados

La FEVI calculada a partir del CZT-SPECT y CZT-repro correlaciono mejor con la VRIE NaI-planar (r = 0,93 y 0,99, respectivamente) que la FEVD (r = 0,76 y 0,82, respectivamente). Se observo una excelente correlación intra-clase y un bajo sesgo en las comparaciones intra-observador para las FsE bi-ventriculares derivadas de los tres conjuntos de datos. Se encontró un rango mas amplio de concordancia para la FEVI por CZT-SPECT, así como una menor correlación y un sesgo significativo para la FEVD por VRIE NaI-planar y CZT-repro en el análisis inter-observador. No obstante, el tiempo de adquisición de las imágenes se puede reducir a 4 minutos sin aumentar la variabilidad en las FsE utilizando la cámara CZT (P = NS).

Conclusiones

La FEVI calculada a partir del CZT-SPECT y CZT-repro tienen una buena correlación con las de la VRIE NaI-planar. La cámara CZT puede reducir el tiempo de adquisición de imágenes, preservando la calidad de imagen en la evaluación de las FsE bi-ventriculares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

EF:

Ejection fraction

SPECT:

Single-photon emission computed tomography

ERNA:

Equilibrium radionuclide angiography

CZT:

Cadmium-zinc-telluride

GBPS:

Gated blood-pool SPECT

LAO:

Left anterior oblique

LV:

Left ventricular

RV:

Right ventricular

EDV:

End-diastolic volume

ESV:

End-systolic volume

References

  1. de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellersen L, Gotthardt M, Oyen WJ, Kapusta L, et al. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med Technol 2013;41:170-81.

    Article  PubMed  Google Scholar 

  2. Daou D, Van Kriekinge SD, Coaguila C, Lebtahi R, Fourme T, Sitbon O, et al. Automatic quantification of right ventricular function with gated blood pool SPECT. J Nucl Cardiol 2004;11:293-304.

    Article  PubMed  Google Scholar 

  3. Groch MW, DePuey EG, Belzberg AC, Erwin WD, Kamran M, Barnett CA, et al. Planar imaging versus gated blood-pool SPECT for the assessment of ventricular performance: A multicenter study. J Nucl Med 2001;42:1773-9.

    CAS  PubMed  Google Scholar 

  4. Sibille L, Bouallegue FB, Bourdon A, Micheau A, Vernhet-Kovacsik H, Mariano-Goulart D. Comparative values of gated blood-pool SPECT and CMR for ejection fraction and volume estimation. Nucl Med Commun 2011;32:121-8.

    Article  PubMed  Google Scholar 

  5. Herzog BA, Buechel RR, Katz R, Brueckner M, Husmann L, Burger IA, et al. Nuclear myocardial perfusion imaging with a cadmium-zinc-telluride detector technique: Optimized protocol for scan time reduction. J Nucl Med 2010;51:46-51.

    Article  PubMed  Google Scholar 

  6. Duvall WL, Croft LB, Ginsberg ES, Einstein AJ, Guma KA, George T, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol 2011;18:847-57.

    Article  PubMed  Google Scholar 

  7. Einstein AJ, Blankstein R, Andrews H, Fish M, Padgett R, Hayes SW, et al. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: The MILLISIEVERT study. J Nucl Med 2014;55:1430-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wells RG, Marvin B, Kovalski G, Ruddy TD. Planar radionuclide angiography with a dedicated cardiac SPECT camera. J Nucl Cardiol 2013;20:358-66.

    Article  PubMed  Google Scholar 

  9. Jensen MM, Schmidt U, Huang C, Zerahn B. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras. J Nucl Cardiol 2014;21:384-96.

    Article  PubMed  Google Scholar 

  10. Jensen MM, Haase C, Zerahn B. Interstudy repeatability of left and right ventricular volume estimations by serial-gated tomographic radionuclide angiographies using a cadmium-zinc-telluride detector gamma camera. Clin Physiol Funct Imaging 2015;35:418-24.

    Article  CAS  PubMed  Google Scholar 

  11. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, et al. Equilibrium radionuclide angiocardiography. J Nucl Cardiol 2006;13:e56-79.

    Article  PubMed  Google Scholar 

  12. Massardo T, Gal RA, Grenier RP, Schmidt DH, Port SC. Left ventricular volume calculation using a count-based ratio method applied to multigated radionuclide angiography. J Nucl Med 1990;31:450-6.

    CAS  PubMed  Google Scholar 

  13. Van Kriekinge SD, Berman DS, Germano G. Automatic quantification of left ventricular ejection fraction from gated blood pool SPECT. J Nucl Cardiol 1999;6:498-506.

    Article  PubMed  Google Scholar 

  14. O’Doherty J, Rojas Fisher B, Price JM, Wechalekar K. Assessment of an intermediate reprojection technique transitioning from planar to SPECT radionuclide ventriculography. J Nucl Cardiol 2014;21:944-53.

    Article  PubMed  Google Scholar 

  15. Xie BQ, Tian YQ, Zhang J, Zhao SH, Yang MF, Guo F, et al. Evaluation of left and right ventricular ejection fraction and volumes from gated blood-pool SPECT in patients with dilated cardiomyopathy: Comparison with cardiac MRI. J Nucl Med 2012;53:584-91.

    Article  PubMed  Google Scholar 

  16. Massardo T, Jaimovich R, Lavados H, Gutierrez D, Rodriguez JC, Saavedra JM, et al. Comparison of radionuclide ventriculography using SPECT and planar techniques in different cardiac conditions. Eur J Nucl Med Mol Imaging 2007;34:1735-46.

    Article  PubMed  Google Scholar 

  17. Nichols K, Saouaf R, Ababneh AA, Barst RJ, Rosenbaum MS, Groch MW, et al. Validation of SPECT equilibrium radionuclide angiographic right ventricular parameters by cardiac magnetic resonance imaging. J Nucl Cardiol 2002;9:153-60.

    Article  PubMed  Google Scholar 

  18. Hacker M, Hoyer X, Kupzyk S, La Fougere C, Kois J, Stempfle HU, et al. Clinical validation of the gated blood pool SPECT QBS processing software in congestive heart failure patients: Correlation with MUGA, first-pass RNV and 2D-echocardiography. Int J Cardiovasc Imaging 2006;22:407-16.

    Article  PubMed  Google Scholar 

  19. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 1987;82:1109-18.

    Article  CAS  PubMed  Google Scholar 

  20. Songy B, Guernou M, Lussato D, Queneau M, Geronazzo R. Low-dose thallium-201 protocol with a cadmium-zinc-telluride cardiac camera. Nucl Med Commun 2012;33:464-9.

    Article  CAS  PubMed  Google Scholar 

  21. Oddstig J, Hedeer F, Jogi J, Carlsson M, Hindorf C, Engblom H. Reduced administered activity, reduced acquisition time, and preserved image quality for the new CZT camera. J Nucl Cardiol 2013;20:38-44.

    Article  PubMed  Google Scholar 

  22. Sibille L, Bouallegue FB, Bourdon A, Mariano-Goulart D. Influence of CT-based attenuation correction in assessment of left and right ventricular functions with count-based gated blood-pool SPECT. J Nucl Cardiol 2011;18:642-9.

    Article  PubMed  Google Scholar 

  23. Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med 2015;29:342-50.

    Article  PubMed  Google Scholar 

  24. Yamauchi Y, Kanzaki Y, Otsuka K, Hayashi M, Okada M, Nogi S, et al. Novel attenuation correction of SPECT images using scatter photopeak window data for the detection of coronary artery disease. J Nucl Cardiol 2014;21:109-17.

    Article  PubMed  Google Scholar 

  25. Kim SJ, Kim IJ, Kim YS, Kim YK. Gated blood pool SPECT for measurement of left ventricular volumes and left ventricular ejection fraction: Comparison of 8 and 16 frame gated blood pool SPECT. Int J Cardiovasc Imaging 2005;21:261-6.

    Article  PubMed  Google Scholar 

  26. Kim SJ, Kim IJ, Kim YS, Kim YK, Shin YB, Kim DS. Automatic quantification of right ventricular volumes and right ventricular ejection fraction with gated blood pool SPECT: Comparison of 8- and 16-frame gated blood pool SPECT with first-pass radionuclide angiography. J Nucl Cardiol 2005;12:553-9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Ministry of Science and Technology of Taiwan (MOST 101-2314-B-418-012-MY3 and 103-NU-E-002-001-NU). No other potential conflict of interest relevant to this article was reported.

Disclosures

The authors have disclosed that they do not have any potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yen-Wen Wu MD, PhD or Mei-Fang Cheng MD.

Additional information

Yen-Wen Wu and Mei-Fang Cheng contributed equally to the study.

JNC thanks Dr. E. Alexanderson, UNAM, Mexico for providing the Spanish abstract.

See related editorial, doi:10.1007/s12350-016-0414-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YC., Ko, CL., Yen, RF. et al. Comparison of biventricular ejection fractions using cadmium-zinc-telluride SPECT and planar equilibrium radionuclide angiography. J. Nucl. Cardiol. 23, 348–361 (2016). https://doi.org/10.1007/s12350-015-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0367-1

Keywords

Navigation