Skip to main content

Advertisement

Log in

Assessment of left ventricular ejection fraction with cardiofocal collimators: Comparison between IQ-SPECT, planar equilibrium radionuclide angiography, and cardiac magnetic resonance

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

IQ-SPECT has been shown to significantly reduce acquisition time and administered dose while preserving image quality in myocardial perfusion imaging. Whether IQ-SPECT provides accurate left ventricular ejection fractions (LVEF) with gated blood pool SPECT (GBPS) remains unknown.

Methods

Sixty patients underwent IQ-SPECT GBPS and planar imaging. Among those patients, 11 underwent both cMRI and GBPS. GBPS LVEF, LVEDV, and LVESV were calculated using 2 validated software; QBS (Cedars-Sinai Medical Center, Los Angeles, USA) and MHI (Montreal Heart Institute, Montreal, Canada). LVEF, LVEDV, and LVESV obtained with the different modalities were compared.

Results

Average planar LVEF was 48 ± 11% (mean ± SD), average LVEDV was 177 ± 59 mL (range 63 to 342 mL), and average LVESV was 96 ± 46 mL (range 16 to 234 mL). GBPS LVEF and their correlation coefficient with planar LVEF were 40 ± 12% (r = 0.70) and 44 ± 12% (r = 0.83) with QBS and MHI, respectively. Correlation coefficient between cMRI and planar LVEF was 0.65 and were 0.69 and 0.52 between cMRI and GBPS using QBS and MHI, respectively.

Conclusions

LVEF calculated with GBPS using IQ-SPECT correlates with planar measurements. Correlation is best using the MHI method and variation is independent of LVEDV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

GBPS:

Gated blood pool SPECT

ICD:

Implantable cardioverter defibrillator

LEAP:

Low energy all purpose

LEHR:

Low energy high resolution

LVEDV:

Left ventricular end diastolic volume

LVESV:

Left ventricular end systolic volume

LVEF:

Left ventricular ejection fraction

MPI:

Myocardial perfusion imaging

MUGA:

Multi-gated acquisition study

References

  1. Wittry MD, Juni JE, Royal HD, Heller GV, Port SC. Procedure guideline for equilibrium radionuclide ventriculography J Nucl Med 1997;38:1658.

    CAS  PubMed  Google Scholar 

  2. Cardinale D, Colombo A, Cipolla CM. Prevention and treatment of cardiomyopathy and heart failure in patients receiving cancer chemotherapy Curr Treat Options Cardiovasc Med 2008;10:486-95.

    Article  Google Scholar 

  3. Wackers FJT. Equilibrium gated radionuclide angiocardiography: Its invention, rise, and decline and … comeback? J Nucl Cardiol 2016;23:362-5.

    Article  Google Scholar 

  4. Harel F, Finnerty V, Grégoire J, Thibault B, Marcotte F, Marcotte P, et al. Gated blood-pool SPECT versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction. J Nucl Cardiol 2010;17:427-34.

    Article  Google Scholar 

  5. Nichols KJ, Van Tosh A, Wang Y, Palestro CJ, Reichek N. Validation of gated blood-pool SPECT regional left ventricular function measurements. J Nucl Med 2009;50:53-60.

    Article  Google Scholar 

  6. Xie B-Q, Tian Y-Q, Zhang J, Zhao SH, Yang MF, Guo F, et al. Evaluation of left and right ventricular ejection fraction and volumes from gated blood-pool SPECT in patients with dilated cardiomyopathy: Comparison with cardiac MRI. J Nucl Med 2012;53:584-91.

    Article  Google Scholar 

  7. Faber TL, Stokely EM, Templeton GH, Akers MS, Parkey RW, Corbett JR. Quantification of three-dimensional left ventricular segmental wall motion and volumes from gated tomographic radionuclide ventriculograms. J Nucl Med 1989;30:638-49.

    CAS  PubMed  Google Scholar 

  8. Everaert H, Vanhove C, Hamill JJ, Franken PR. Cardiofocal collimators for gated single-photon emission tomographic myocardial perfusion imaging. Eur J Nucl Med 1998;25:3-7.

    Article  CAS  Google Scholar 

  9. Hawman PC, Haines EJ. The cardiofocal collimator: A variable-focus collimator for cardiac SPECT. Phys Med Biol 1994;39:439-50.

    Article  CAS  Google Scholar 

  10. DePuey EG. Advances in SPECT camera software and hardware: Currently available and new on the horizon. J Nucl Cardiol 2012;19:551-81.

    Article  Google Scholar 

  11. Hippeläinen E, Mäkelä T, Kaasalainen T, Kaleva E. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: Comparison between IQ-SPECT and LEHR. EJNMMI Phys 2017;4:20.

    Article  Google Scholar 

  12. Yoneyama H, Shibutani T, Konishi T, Mizutani A, Hashimoto R, Onoguchi M, et al. Validation of left ventricular ejection fraction with the IQ SPECT system in small-heart patients. J Nucl Med Technol 2017;45:201-7.

    Article  Google Scholar 

  13. Okuda K, Nakajima K, Matsuo S, Kondo C, Sarai M, Horiguchi Y, et al. Creation and characterization of normal myocardial perfusion imaging databases using the IQ SPECT system. J Nucl Cardiol 2017. https://doi.org/10.1007/s12350-016-0770-2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caobelli F, Kaiser SR, Thackeray JT, Bengel FM, Chieregato M, Soffientini A, et al. IQ SPECT allows a significant reduction in administered dose and acquisition time for myocardial perfusion imaging: Evidence from a phantom study. J Nucl Med 2014;55:2064-70.

    Article  Google Scholar 

  15. Caobelli F, Thackeray JT, Soffientini A, Bengel FM, Pizzocaro C, Guerra UP. Feasibility of one-eighth time gated myocardial perfusion SPECT functional imaging using IQ-SPECT. Eur J Nucl Med Mol Imaging 2015;42:1920-8.

    Article  Google Scholar 

  16. Caobelli F, Pizzocaro C, Paghera B, Guerra UP. Evaluation of patients with coronary artery disease IQ-SPECT protocol in myocardial perfusion imaging: Preliminary results. Nukl Nucl Med 2013;52:178-85.

    Article  CAS  Google Scholar 

  17. Lyon MC, Foster C, Ding X, Dorbala S, Spence D, Bhattacharya M, et al. Dose reduction in half-time myocardial perfusion SPECT-CT with multifocal collimation. J Nucl Cardiol 2016;23:657-67.

    Article  Google Scholar 

  18. Pirich C, Keinrath P, Barth G, Rendl G, Rettenbacher L, Rodrigues M. Diagnostic accuracy and functional parameters of myocardial perfusion scintigraphy using accelerated cardiac acquisition with IQ SPECT technique in comparison to conventional imaging. Q J Nucl Med Mol Imaging 2014;61:102-7.

    PubMed  Google Scholar 

  19. Matsuo S, Nakajima K, Onoguchi M, Wakabayash H, Okuda K, Kinuya S. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects. Ann Nucl Med 2015;29:452-9.

    Article  Google Scholar 

  20. Erwin WD, Jessop AC, Mar MV, Macapinlac HA, Mawlawi OR. Qualitative and quantitative comparison of gated blood pool single photon emission computed tomography using low-energy high-resolution and SMARTZOOM collimation. Nucl Med Commun 2017;38:35-43.

    Article  Google Scholar 

  21. Nakajima K, Okuda K, Momose M, Matsuo S, Kondo C, Sarai M, et al. IQ SPECT technology and its clinical applications using multicenter normal databases. Ann Nucl Med 2017;31:649-59.

    Article  Google Scholar 

  22. Gremillet E, Agostini D. How to use cardiac IQ SPECT routinely? An overview of tips and tricks from practical experience to the literature. Eur J Nucl Med Mol Imaging 2016;43:707-10.

    Article  Google Scholar 

  23. Harel F, Finnerty V, Ngo Q, Grégoire J, Khairy P, Thibault B. SPECT versus planar gated blood pool imaging for left ventricular evaluation. J Nucl Cardiol 2007;14:544-9.

    Article  Google Scholar 

  24. Harel F, Finnerty V, Grégoire J, Thibault B, Khairy P. Comparison of left ventricular contraction homogeneity index using SPECT gated blood pool imaging and planar phase analysis. J Nucl Cardiol 2008;15:80-5.

    Article  Google Scholar 

  25. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm S, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing. J Cardiovasc Magn Reson 2013;15:35.

    Article  Google Scholar 

  26. Chen Y-C, Ko C-L, Yen R-F, Lo M-F, Huang Y-H, Hsu P-Y, et al. Comparison of biventricular ejection fractions using cadmium-zinc-telluride SPECT and planar equilibrium radionuclide angiography. J Nucl Cardiol 2016;23:348-61.

    Article  Google Scholar 

Download references

Disclosure

MHI is proprietary software of the Montreal Heart Institute. Matthieu Pelletier-Galarneau, Vincent Finnerty, Stephanie Tan, Sebastien Authier, Jean Gregoire, and Francois Harel declare that they have no other conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Pelletier-Galarneau MD, MSc.

Additional information

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelletier-Galarneau, M., Finnerty, V., Tan, S. et al. Assessment of left ventricular ejection fraction with cardiofocal collimators: Comparison between IQ-SPECT, planar equilibrium radionuclide angiography, and cardiac magnetic resonance. J. Nucl. Cardiol. 26, 1857–1864 (2019). https://doi.org/10.1007/s12350-018-1251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-018-1251-6

Keywords

Navigation