Skip to main content
Log in

Foliar spray of Auxin/IAA modulates photosynthesis, elemental composition, ROS localization and antioxidant machinery to promote growth of Brassica juncea

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Auxins (Aux) are primary growth regulators that regulate almost every aspect of growth and development in plants. It plays a vital role in various plant processes besides controlling the key aspects of cell division, cell expansion, and cell differentiation. Considering the significance of Aux, and its potential applications, a study was conducted to observe the impact of indole acetic acid (IAA), a most active and abundant form of Aux on Brassica juncea plants growing under natural environmental conditions. Different concentrations (0, 10−10, 10−8, 10−6 M) of IAA were applied once in a day at 25-day stage of growth for 5 days, consecutively. Various parameters (growth, photosynthetic, biochemical, oxidative biomarkers and nutrient composition) were assessed at different days after sowing (DAS). Scanning electron microscopy (SEM) of leaf stomata, reactive oxygen species (ROS) localization in leaf and roots, and confocal microscopy were also conducted. The results revealed that all the IAA concentrations were effective in growth promotion and ROS reduction, however, the 10−8 M of IAA exhibited the maximum improvement in all the above mentioned parameters as compared to the control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamowski M, Friml J (2015) PIN-dependentauxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Hayat S (1999) Response of nitrate reductase to substituted indole acetic acids in pea seedlings. In: Srivastava GC, Singh K, Pal M (eds) Plant physiology for sustainable agriculture. Pointer Publishers, Jaipur, pp 252–259

    Google Scholar 

  • Ahmad A, Hayat S, Fariduddin Q, Ahmad I (2001) Photosynthetic efficiency of plants of Brassica juncea, treated with chloro substituted auxins. Photosynthetica 39(4):565–568

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Hasan SA, Ahmad A (2008) A comparative effect of IAA and 4-Cl-IAA on growth, nodulation and nitrogen fixation in Vigna radiate (L.) Wilczek. Acta Physiol Plant 30(1):35–41

    Article  CAS  Google Scholar 

  • Ammanullah MM, Sekar S, Vicent S (2010) Plant growth substances in crop production. Asian J Plant Sci 9:215–222

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Awan IU, Baloch MS, Sadozai NS, Sulemani MZ (1999) Stimulatory effect of GA3 and IAA on ripening process, kernel development and quality of rice. Pak J BiolSci 2(2):410–412

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Benfey PN (2002) Auxin action: slogging out of the swamp. CurrBiol 12:R389–R390

    CAS  Google Scholar 

  • Bhandari K, Sharma KD, HanumanthaRao B, Siddique KHM, Gaur P, Agrawal SK, Nair RM, Nayyar H (2017) Temperature sensitivity of food legumes: a physiological insight. Acta Physiol Plant 39:68

    Article  CAS  Google Scholar 

  • Boivin S, Fonouni-Farde C, Frugier F (2016) How auxin and cytokininphytohormones modulate root microbe interactions. Front Plant Sci 7:1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brodersen CR, McElrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chatterjee A, Mandal RK, Sircar SM (1976) Effects of growth substances on productivity, photosynthesis and translocation of rice varieties. Indian J Plant Physiol 19:131–138

    CAS  Google Scholar 

  • Cleland RE, Prins HB, Harper JR, Higinbotham N (1977) Rapid hormone-induced hyperpolarization of the oat coleoptile transmembrane potential. Plant Physiol 59(3):395–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czarnocka W, Karpinski S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20

    Article  CAS  PubMed  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones, physiology, biochemistry and molecular biology, 2nd edn. Kluwer, Dordrecht, pp 1–12

    Google Scholar 

  • Dhlngra HR, Varghese TM, Kajal N (1994) Salinity induced changes in carbohydrate metabolism and inorganic constituents in the developing chickpea seeds. Indian J Plant Physiol 37:21–24

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Foyer CH, Parry M, Noctor G (2003) Markers and signals associated with nitrogen assimilation in higher plants. J Exp Bot 54(382):585–593

    Article  CAS  PubMed  Google Scholar 

  • Galston AW, Davies PJ (1969) Hormonal regulation in higher plants. Science 163:1288–1297. https://doi.org/10.1126/science.163.3874.1441

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone responsive transcription. Cell Mol Life Sci 54:619–627

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Fariduddin Q, Ali B, Ahmad A (2006) Effect of chloroindoleauxins on the growth and nitrate reductase activity in Solanummelongena. Science 5(1):14–16

    CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Ali B, Ahmad A (2009) Auxin analogues and nitrogen metabolism, photosynthesis, and yield of chickpea. J Plant Nutr 32(9):1469–1485

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch BiochemBiophys 125:189–198

    Article  CAS  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    Article  CAS  PubMed  Google Scholar 

  • Jacobs WP (1979) Plant hormones and plant development. Cambridge University Press, London, pp 104–109

    Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. BiochemBiophys Res Commun 43:1274–1279

    Article  CAS  Google Scholar 

  • Kadiri M (1999) Effect of indole-3-acetic add and coconut milk on the vegetative growth and yield of red pepper (Capiscum annum L). Global J Pure Appl Sci 5(3):313–316

    CAS  Google Scholar 

  • Kapgate HG, Potkile NN, Zode NG, Dhopte AM (1989) Persistence of physiological responses of upland cotton to growth regulators. Ann Plant Physiol 3:188–195

    Google Scholar 

  • Kaur J, Singh G (1987) Hormonal regulation of grain filling in relation to peduncle anatomy in rice cultivars. Indian J ExpBiol 25:63–65

    CAS  Google Scholar 

  • Kaur N, Sharma I, Kirat K, Pati PK (2016) Detection of reactive oxygen species in Oryza sativa L. (rice). Bio Protoc 6:1–9

    Article  Google Scholar 

  • Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indole acetic acid (IAA) and inorganic nutrients—a field trial. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  • Kolbert Z, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J Plant Physiol 165(9):967–975

    Article  CAS  PubMed  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during auto oxidation of hydroxylamine and an assay for superoxide dismutase. Arch BiochemBiophys 186:189–195

    Article  CAS  Google Scholar 

  • Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS (1990) Effects of pre-sowing seed treatments with GA3 and IAA on flowering and yield components in groundnuts. Korean J Crop Sci 35:1–9

    Google Scholar 

  • Li J, Guan Y, Yuan L, Hou J, Wang C, Liu F, Zhu S (2019) Effects of exogenous IAA in regulating photosynthetic capacity, carbohydrate metabolism and yield of Zizania latifolia. Sci Hortic 253:276–285

    Article  CAS  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950. https://doi.org/10.1242/dev.086363

    Article  CAS  PubMed  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J Plant Nutr 30(8):1247–1261

    Article  CAS  Google Scholar 

  • Majeau N, Arnoldo M, Coleman JR (1994) Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. Plant MolBiol 25:377–385

    CAS  Google Scholar 

  • McAdam SA, Eléouët MP, Best M, Brodribb TJ, Murphy MC, Cook SD, Dalmais M, Dimitriou T, Gélinas-Marion A, Gill WM, Hegarty M (2017) Linking auxin with photosynthetic rate via leaf venation. Plant Physiol 175(1):351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay MJ, Ross JJ, Lawrence NL, Cramp RE, BeveridgeCA RJB (1994) Control of internode length in Pisum sativum. Plant Physiol 106:1521–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay R, Chatterjee S, Chatterjee BP, Guha AK (2005) Enhancement of biomass production of edible mushroom Pleurotussajor-caju grown in whey by plant growth hormones. Process Biochem 40:1241–1244

    Article  CAS  Google Scholar 

  • Naeem M, Bhatti I, Ahmad RH, Ashraf MY (2004) Effect of some growth hormones (GA3, IAA and kinetin) on the morphology and early or delayed initiation of bud of lentil (Lens culinaris Medik). Pak J Bot 36:801–809

    Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594. https://doi.org/10.1101/cshperspect.a001594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe K, Yang SY, Tsuzuki M, Miyachi S (1984) Carbonic anhydrase: its content in spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase antibody. Plant Sci Lett 33:145–153

    Article  CAS  Google Scholar 

  • Pandey DM, Goswami CL, Kumar B, Jain S (2000) Hormonal regulation of photosynthetic enzymes in cotton under water stress. Photosynthetica 38:403–407

    Article  CAS  Google Scholar 

  • Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196:349–366

    Article  PubMed  Google Scholar 

  • Pantin F, Renaud J, Barbier F et al (2013) Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate. CurrBiol 23:1805–1811

    CAS  Google Scholar 

  • Paque S, Weijers D (2016) Q&A: Auxin: the plant molecule that influences almost anything. BMC Biol 14(1):67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen HA, Dudits D, Feher A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of Alfaalfa. Plant Physiol 129:1807–1819. https://doi.org/10.1104/pp.000810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasternak TP, Potters G, Caubergs R, Jansen MAK (2005) Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. J Exp Bot 56:1991–2001

    Article  CAS  PubMed  Google Scholar 

  • Patterson BD, Payne LA, Cnen Y, Graham D (1984) An inhibitor of catalase induced by cold in chilling-sensitive plants. Plant Physiol 76:1014–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A (2012) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235:1383–1396

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73(1):57–66

    Article  CAS  Google Scholar 

  • Ramiro DA, Guerreiro-Filho O, Mazzafera P (2006) Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucopteracoffeella. J ChemEcol 32:1977–1988

    CAS  Google Scholar 

  • Rayle DL, Cleland R (1977) Control of plant cell enlargement by hydrogen ions. Curr Top Dev Biol 11:187–214

    Article  CAS  PubMed  Google Scholar 

  • Ribnicky DM, Ilic N, Cohen JD, Cooke TJ (1996) The effects of exogenous auxins on endogenous indole-3-acetic acid metabolism (the implications for carrot somatic embryogenesis). Plant Physiol 112(2):549–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadak MS, Dawood MG, Bakry AB, El-Karamany MF (2013) Synergistic effect of indole acetic acid and kinetin on performance, some biochemical constituents and yield of faba bean plant grown under newly reclaimed sandy soil. W J AgricSci 9(4):335–344

    Google Scholar 

  • Sami F, Siddiqui H, Hayat S (2020) Nitric oxide-mediated enhancement in photosynthetic efficiency, ion uptake and carbohydrate metabolism that boosts overall photosynthetic machinery in mustard plants. J Plant Growth Regul 1–23

  • San-Francisco S, Houdusse F, Zamarreño AM, Garnica M, Casanova E, García-Mina JM (2005) Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic conditions. Sci Hortic 106(1):38–52

    Article  CAS  Google Scholar 

  • Sarkar PK, Haque MS, Abdul Karim M (2002) Growth analysis of soybean as influenced by GA3 and IAA and their frequency of application. J Agron 1(3):123–126

    Article  Google Scholar 

  • Sergiev I, Todorova D, Katerova Z, Shopova E, Jankauskiene J, Jurkoniene S (2017) Beneficial effects of auxin-like compounds on pea plants irradiated with UV-C. Genet Plant Physiol 7(3–4):135–146

    Google Scholar 

  • Siddiqui H, Ahmed KB, Hayat S (2018) Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiol Biochem 129:198–212

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Prasad SM (2015) IAA alleviates Cd toxicity on growth, photosynthesis and oxidative damages in eggplant seedlings. Plant Growth Regul 77(1):87–98

    Article  CAS  Google Scholar 

  • Sitbon F, Perrot-Rechenmann C (1997) Expression of auxin-regulated genes. Physiol Plant 100:443–455

    Article  CAS  Google Scholar 

  • Smith S, Stewart GR (1990) Effect of potassium levels on the stomatal behavior of the hemi-parasite Strigahermonthica. Plant Physiol 94(3):1472–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner JB, Howell SF (1935) A method for determination of saccharase activity. Int J Biol Chem 108(1):51–54

    CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant Physiology. Sinauer Associates Inc, Sunderland, Massachusetts

    Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc Publishers, Sunderland

    Google Scholar 

  • Takahashi K, Hayashi KI, Kinoshita T (2012) Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159(2):632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamas IA, Schwartz JW, Breithampt BJ, Hagin JM, Arnold PH (1973) Effect of indole acetic acid on photosynthetic reactions in isolated chloroplast. In: Proceedings of the Eighth international conference on plant growth substances, 1159–1168

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319. https://doi.org/10.1046/j.1365-313X.1999.00538.x

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Chory J (2011) Crosstalk in cellular signaling: background noise or the real thing? DevCell 21:985–991

    CAS  Google Scholar 

  • Weijers D, Wagner D (2016) Transcriptional responses to the auxin hormone. Annu Rev PlantBiol 67:539–574

    Article  CAS  Google Scholar 

  • Went F (1935) Auxin, the plant growth hormone. Bot Rev 1:162–182

    Article  CAS  Google Scholar 

  • Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338. https://doi.org/10.1093/mp/ssr104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Aligarh Muslim University for providing all the required facilities during the experiment and Anayat Rasool Mir is also thankful to the University Grant Commission, New Delhi, India for the award of Non-Net Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Hayat.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, A.R., Siddiqui, H., Alam, P. et al. Foliar spray of Auxin/IAA modulates photosynthesis, elemental composition, ROS localization and antioxidant machinery to promote growth of Brassica juncea. Physiol Mol Biol Plants 26, 2503–2520 (2020). https://doi.org/10.1007/s12298-020-00914-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00914-y

Keywords

Navigation