Skip to main content
Log in

Nanozyme catalysis in a crowded environment: the impact of diffusion and surface shielding

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanozymes are widely used in various applications as nanosized catalysts for replacing enzymes. An accurate estimation of the catalytic activity of nanozymes in real conditions is critical. In this article, for the first time, we systematically studied the effect of macromolecular molecules co-existing in the real system on the oxidoreductase (peroxidase, oxidase, and catalase)-mimicking nanozymes made of a gold nanoparticle core and a platinum shell, Prussian Blue, Mn2O3 and CoO nanoparticles. Comparisons were made with horseradish peroxidase. We distinguished two main mechanisms of the negative impact of macromolecules on nanozyme catalysis–slowed diffusion and surface shielding of nanoparticles. While the first mechanism is typical for enzymes, the second one is specific only for nanozymes. Understanding the mechanisms is essential for developing approaches to reduce the unavoidable impact of macromolecules for various analytical and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  PubMed  Google Scholar 

  2. Zandieh, M.; Liu, J. W. Nanozymes: Definition, activity, and mechanisms. Adv. Mater. 2024, 36, 2211041.

    Article  CAS  Google Scholar 

  3. Wang, M. T.; Liu, H. X.; Fan, K. L. Signal amplification strategy design in nanozyme-based biosensors for highly sensitive detection of trace biomarkers. Small Methods 2023, 7, 2301049.

    Article  CAS  Google Scholar 

  4. Cao, C. Y.; Yang, N.; Wang, X. R.; Shao, J. J.; Song, X. J.; Liang, C.; Wang, W. J.; Dong, X. C. Biomedicine meets nanozyme catalytic chemistry. Coord. Chem. Rev. 2023, 491, 215245.

    Article  CAS  Google Scholar 

  5. Hong, J. J.; Guo, Z. J.; Duan, D. H.; Zhang, Y.; Chen, X.; Li, Y. J.; Tu, Z.; Feng, L.; Chen, L.; Yan, X. Y. et al. Highly sensitive nanozyme strip: An effective tool for forensic material evidence identification. Nano Res. 2024, 17, 1785–1791.

    Article  CAS  Google Scholar 

  6. Leeman, M.; Choi, J.; Hansson, S.; Storm, M. U.; Nilsson, L. Proteins and antibodies in serum, plasma, and whole blood-size characterization using asymmetrical flow field-flow fractionation (AF4). Anal. Bioanal. Chem. 2018, 410, 4867–4873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuznetsova, I. M.; Turoverov, K. K.; Uversky, V. N. What macromolecular crowding can do to a protein. Int. J. Mol. Sci. 2014, 15, 23090–23140.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wilcox, X. E.; Chung, C. B.; Slade, K. M. Macromolecular crowding effects on the kinetics of opposing reactions catalyzed by alcohol dehydrogenase. Biochem. Biophys. Rep. 2021, 26, 100956.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilcox, X. E.; Ariola, A.; Jackson, J. R.; Slade, K. M. Overlap concentration and the effect of macromolecular crowding on citrate synthase activity. Biochemistry 2020, 59, 1737–1746.

    Article  CAS  PubMed  Google Scholar 

  10. Loynachan, C. N.; Thomas, M. R.; Gray, E. R.; Richards, D. A.; Kim, J.; Miller, B. S.; Brookes, J. C.; Agarwal, S.; Chudasama, V.; McKendry, R. A. et al. Platinum nanocatalyst amplification: Redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 2018, 12, 279–288.

    Article  CAS  PubMed  Google Scholar 

  11. McVey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. Unusual switchable peroxidase-mimicking nanozyme for the determination of proteolytic biomarker. Nano Res. 2019, 12, 509–516.

    Article  CAS  Google Scholar 

  12. Chen, Z.; Yu, Y. X.; Gao, Y. H.; Zhu, Z. L. Rational design strategies for nanozymes. ACS Nano 2023, 17, 13062–13080.

    Article  CAS  PubMed  Google Scholar 

  13. Mao, M.; Guan, X. J.; Wu, F.; Ma, L. CoO nanozymes with multiple catalytic activities regulate atopic dermatitis. Nanomaterials 2022, 12, 638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao, X.; Zhao, S.; Li, S.; Yao, X. X.; Zhu, X. X.; Chen, W.; Fan, G. C.; Liu, Z. X.; Liu, Q. Y.; Yue, K. CoO nanotubes loaded on graphene and modified with porphyrin moieties for colorimetric sensing of dopamine. ACS Appl. Nano Mater. 2021, 4, 8706–8715.

    Article  CAS  Google Scholar 

  15. Zhang, A. M.; Zhang, Q.; Alfranca, G.; Pan, S. J.; Huang, Z. C.; Cheng, J.; Ma, Q.; Song, J.; Pan, Y. X.; Ni, J. et al. GSH-triggered sequential catalysis for tumor imaging and eradication based on starlike Au/Pt enzyme carrier system. Nano Res. 2020, 13, 160–172.

    Article  CAS  Google Scholar 

  16. Panferov, V. G.; Safenkova, I. V.; Zherdev, A. V.; Dzantiev, B. B. The steadfast Au@Pt soldier: Peroxide-tolerant nanozyme for signal enhancement in lateral flow immunoassay of peroxidase-containing samples. Talanta 2021, 225, 121961.

    Article  CAS  PubMed  Google Scholar 

  17. Chen, J. X.; Wang, Q. Q.; Huang, L.; Zhang, H.; Rong, K.; Zhang, H.; Dong, S. J. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res. 2018, 11, 4905–4913.

    Article  CAS  Google Scholar 

  18. Ellis, R. J.; Minton, A. P. Join the crowd. Nature 2003, 425, 27–28.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

    Article  CAS  Google Scholar 

  20. Tang, G. H.; He, J. Y.; Liu, J. W.; Yan, X. Y.; Fan, K. L. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang, Y. N.; Jin, Y. L.; Cui, H. X.; Yan, X. Y.; Fan, K. L. Nanozyme-based catalytic theranostics. RSC Adv. 2020, 10, 10–20.

    Article  CAS  Google Scholar 

  22. Garehbaghi, S.; Ashrafi, A. M.; Adam, V.; Richtera, L. Surface modification strategies and the functional mechanisms of gold nanozyme in biosensing and bioassay. Mater. Today Bio 2023, 20, 100656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hegedus, L. L.; McCabe, R. W. Catalyst poisoning. Stud. Surf. Sci. Catal. 1980, 6, 471–505.

    Article  CAS  Google Scholar 

  24. de Montellano, P. R. O.; David, S. K.; Ator, M. A.; Tew, D. Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of meso-azidoprotoporphyrin IX. Biochemistry 1988, 27, 5470–5476.

    Google Scholar 

  25. Panferov, V. G.; Safenkova, I. V.; Zherdev, A. V.; Dzantiev, B. B. Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: Impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Microchim. Acta 2020, 187, 268.

    Article  CAS  Google Scholar 

  26. Xu, Y.; Xue, J.; Zhou, Q.; Zheng, Y. J.; Chen, X. H.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. The Fe-N-C nanozyme with both accelerated and inhibited biocatalytic activities capable of accessing drug-drug interactions. Angew. Chem., Int. Ed. 2020, 59, 14498–14503.

    Article  CAS  Google Scholar 

  27. Chen, R.; Chen, X. R.; Zhou, Y. F.; Lin, T.; Leng, Y. K.; Huang, X. L.; Xiong, Y. H. “Three-in-one” multifunctional nanohybrids with colorimetric magnetic catalytic activities to enhance immunochromatographic diagnosis. ACS Nano 2022, 16, 3351–3361.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, B. W.; Sun, Z. Y.; Huang, P. J. J.; Liu, J. W. Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. J. Am. Chem. Soc. 2015, 137, 1290–1295.

    Article  CAS  PubMed  Google Scholar 

  29. Panferov, V. G.; Byzova, N. A.; Biketov, S. F.; Zherdev, A. V.; Dzantiev, B. B. Comparative study of in situ techniques to enlarge gold nanoparticles for highly sensitive lateral flow immunoassay of SARS-CoV-2. Biosensors 2021, 11, 229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phan, L. M. T.; Kim, E. B.; Cheon, S. A.; Shim, T. S.; Kim, H. J.; Park, T. J. Reliable naked-eye detection of Mycobacterium tuberculosis antigen 85B using gold and copper nanoshell-enhanced immunoblotting techniques. Sens. Actuators B: Chem. 2020, 317, 128220.

    Article  CAS  Google Scholar 

  31. Bu, T.; Huang, Q.; Yan, L. Z.; Huang, L. J.; Zhang, M. Y.; Yang, Q. F.; Yang, B. W.; Wang, J. L.; Zhang, D. H. Ultra technically-simple and sensitive detection for Salmonella enteritidis by immunochromatographic assay based on gold growth. Food Control 2018, 84, 536–543.

    Article  CAS  Google Scholar 

  32. Yang, W.; Li, X. B.; Liu, G. W.; Zhang, B. B.; Zhang, Y.; Kong, T.; Tang, J. J.; Li, D. N.; Wang, Z. A colloidal gold probe-based silver enhancement immunochromatographic assay for the rapid detection of abrin-A. Biosens. Bioelectron. 2011, 26, 3710–3713.

    Article  CAS  PubMed  Google Scholar 

  33. Huang, D.; Lin, B. Q.; Song, Y. L.; Guan, Z. C.; Cheng, J.; Zhu, Z.; Yang, C. Y. Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readout. ACS Appl. Mater. Interfaces 2019, 11, 1800–1806.

    Article  CAS  PubMed  Google Scholar 

  34. Li, J. X.; Liu, F.; Zhu, Z.; Liu, D.; Chen, X. F.; Song, Y. L.; Zhou, L. J.; Yang, C. Y. In situ Pt staining method for simple, stable, and sensitive pressure-based bioassays. ACS Appl. Mater. Interfaces 2018, 10, 13390–13396.

    Article  CAS  PubMed  Google Scholar 

  35. Fu, J. M.; Zhou, Y. F.; Huang, X. L.; Zhang, W. J.; Wu, Y. H.; Fang, H.; Zhang, C. Z.; Xiong, Y. H. Dramatically enhanced immunochromatographic assay using cascade signal amplification for ultrasensitive detection of Escherichia coli O157: H7 in milk. J. Agric. Food Chem. 2020, 68, 1118–1125.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, C. Y.; Chen, Y. W.; Wang, X. H.; Zhang, L. L.; Luo, Y.; Tang, Q. S.; Wang, Y.; Liang, X. L.; Ma, C. In situ synthesized nanozyme for photoacoustic-imaging-guided photothermal therapy and tumor hypoxia relief. iScience 2023, 26, 106066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keum, C.; Hirschbiegel, C. M.; Chakraborty, S.; Jin, S.; Jeong, Y.; Rotello, V. M. Biomimetic and bioorthogonal nanozymes for biomedical applications. Nano Converg. 2023, 10, 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, R. F.; Yan, X. Y.; Fan, K. L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021, 2, 534–547.

    Article  CAS  Google Scholar 

  39. Gao, Z. Q.; Ye, H. H.; Tang, D. Y.; Tao, J.; Habibi, S.; Minerick, A.; Tang, D. P.; Xia, X. H. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017, 17, 5572–5579.

    Article  CAS  PubMed  Google Scholar 

  40. Panferov, V. G.; Byzova, N. A.; Zherdev, A. V.; Dzantiev, B. B. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Microchim. Acta 2021, 188, 309.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Vasily G. Panferov received the AMTD Waterloo Global Talent Postdoctoral Fellowship from the University of Waterloo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juewen Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panferov, V.G., Liu, J. Nanozyme catalysis in a crowded environment: the impact of diffusion and surface shielding. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6630-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6630-5

Keywords

Navigation