Skip to main content

Advertisement

Log in

Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: impact of nanoparticle composition on detection limit of Clavibacter michiganensis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The influence of Au@Pt nanoparticles’ composition, morphology, and peroxidase-mimicking activity on the limit of detection (LOD) of lateral flow immunoassay (LFIA) has been investigated. Fourteen types of nanoparticles were synthesized by varying the concentration of Pt4+ (20–2000 μM), using gold nanoparticles (GNP, diameter 20.0 ± 2.6 nm) as the seeds and ascorbic acid as a reducing agent. Au@Pt nanoparticles and GNPs were conjugated with antibodies specific to the target analyte, a widespread and dangerous phytopathogenic bacteria species (Clavibacter michiganensis). We found that the 100-fold growth of the Pt4+ concentration was accompanied by an increase of the Au@Pt nanoparticle diameter (24–55 nm) and surface area with the formation of urchin-shaped morphology. These changes led to a 70-fold increase in peroxidase-mimicking activity in the solution (specific activity 0.06–4.4 U mg−1) and a 30-fold decrease in LOD using the catalytic activity of Au@Pt. The Au@Pt nanoparticles synthesized at 1000–2000 μM of Pt4+ demonstrated statistically indistinguishable catalytic activity. The highest sensitivity of LFIA was reached for Au@Pt nanoparticles synthesized at Pt4+ concentration equal to 1000 μM. Au@Pt nanoparticles saved most of their peroxidase-mimicking activity, whereas endogenous plant peroxidases were completely inhibited by sodium azide. The LOD of LFIA with Au@Pt nanoparticles synthesized at 1200 μM of Pt4+ was 300 colony-forming units (CFU) per mL of buffer and 500 CFU per mL of potato tuber extract, which provides 330- and 200-fold improvement compared to the conventional LFIA with GNPs. The assay consists of three rapid 5-min stages, namely, extraction, lateral flow, and color enhancement (oxidation of diaminobenzidine by Au@Pt nanoparticles). LFIA with the urchin Au@Pt nanoparticles allows the detection of latent bacterial infections rapidly without equipment or special skills.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu G, Yin X, Jin D et al (2019) Paper-based immunosensors: current trends in the types and applied detection techniques. TrAC Trends Anal Chem 111:100–117. https://doi.org/10.1016/j.trac.2018.09.027

    Article  CAS  Google Scholar 

  2. Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH (2019) Sensitivity enhancement in lateral flow assays: a systems perspective. Lab Chip 19:2486–2499. https://doi.org/10.1039/c9lc00104b

    Article  CAS  Google Scholar 

  3. Yang H, Xu W, Zhou Y (2019) Signal amplification in immunoassays by using noble metal nanoparticles: a review. Microchim Acta 186:859. https://doi.org/10.1007/s00604-019-3904-9

    Article  CAS  Google Scholar 

  4. Tang RH, Liu LN, Zhang SF, He XC, Li XJ, Xu F, Ni YH, Li F (2019) A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta 186:357–325. https://doi.org/10.1007/s00604-019-3626-z

    Article  CAS  Google Scholar 

  5. Zhou Y, Ding L, Wu Y et al (2019) Emerging strategies to develop sensitive AuNP-based ICTS nanosensors. TrAC Trends Anal Chem 112:147–160. https://doi.org/10.1016/j.trac.2019.01.006

    Article  CAS  Google Scholar 

  6. Gao Z, Xu M, Lu M, Chen G, Tang D (2015) Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron 70:194–201. https://doi.org/10.1016/j.bios.2015.03.039

    Article  CAS  Google Scholar 

  7. Loynachan CN, Thomas MR, Gray ER, Richards DA, Kim J, Miller BS, Brookes JC, Agarwal S, Chudasama V, McKendry R, Stevens MM (2018) Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12:279–288. https://doi.org/10.1021/acsnano.7b06229

    Article  CAS  Google Scholar 

  8. Jiang T, Song Y, Wei T, Li H, du D, Zhu MJ, Lin Y (2016) Sensitive detection of Escherichia coli O157:H7 using Pt–Au bimetal nanoparticles with peroxidase-like amplification. Biosens Bioelectron 77:687–694. https://doi.org/10.1016/j.bios.2015.10.017

    Article  CAS  Google Scholar 

  9. Zhang J, Yu Q, Qiu W, Li K, Qian L, Zhang X, Liu G (2019) Gold-platinum nanoflowers as a label and as an enzyme mimic for use in highly sensitive lateral flow immunoassays: application to detection of rabbit IgG. Microchim Acta 186:357. https://doi.org/10.1007/s00604-019-3464-z

    Article  CAS  Google Scholar 

  10. Gao Z, Ye H, Tang D, Tao J, Habibi S, Minerick A, Tang D, Xia X (2017) Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett 17:5572–5579. https://doi.org/10.1021/acs.nanolett.7b02385

    Article  CAS  Google Scholar 

  11. Lu Y, Yu J, Ye W et al (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183:2481–2489. https://doi.org/10.1007/s00604-016-1886-4

    Article  CAS  Google Scholar 

  12. Panferov VG, Samokhvalov AV, Safenkova IV, Zherdev AV, Dzantiev BB (2018) Study of growth of bare and protein-modified gold nanoparticles in the presence of hydroxylamine and tetrachloroaurate. Nanotechnol Russ 13:614–622. https://doi.org/10.1134/S1995078018060095

    Article  CAS  Google Scholar 

  13. Bragard C, Dehnen-Schmutz K, Di Serio F et al (2019) Pest categorisation of Clavibacter sepedonicus. EFSA J 17:4. https://doi.org/10.2903/j.efsa.2019.5670

    Article  Google Scholar 

  14. A2 List of pests recommended for regulation as quarantine pests. Version 2019–09. European and Mediterranean Plant Protection Organization

  15. Perminow JIS, Akselsen ILW, Borowski E, Ruden Ø, Grønås W (2012) Potato ring rot in Norway: occurrence and control. Potato Res 55:241–247. https://doi.org/10.1007/s11540-012-9219-4

    Article  Google Scholar 

  16. Franc GD (1999) Persistence and latency of Clavibacter michiganensis subsp. sepedonicus in field-grown seed potatoes. Plant Dis 83:247–250. https://doi.org/10.1094/PDIS.1999.83.3.247

    Article  Google Scholar 

  17. Khater M, de la Escosura-Muñiz A, Merkoçi A (2017) Biosensors for plant pathogen detection. Biosens Bioelectron 93:72–86. https://doi.org/10.1016/j.bios.2016.09.091

    Article  CAS  Google Scholar 

  18. Safenkova IV, Zaitsev IA, Pankratova GK, Varitsev YA, Zherdev AV, Dzantiev BB (2014) Lateral flow immunoassay for rapid detection of potato ring rot caused by Clavibacter michiganensis subsp. sepedonicus. Appl Biochem Microbiol 50:675–682. https://doi.org/10.1134/S0003683814120011

    Article  CAS  Google Scholar 

  19. Priou S, Gutarra L, Aley P (1999) Highly sensitive detection of Ralstonia solanacearum in latently infected potato tubers by post-enrichment enzyme-linked immunosorbent assay on nitrocellulose membrane. EPPO Bull 29:117–125. https://doi.org/10.1111/j.1365-2338.1999.tb00805.x

    Article  Google Scholar 

  20. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22. https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  21. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13:1506–1520. https://doi.org/10.1038/s41596-018-0001-1

    Article  CAS  Google Scholar 

  22. Bigall NC, Härtling T, Klose M, Simon P, Eng LM, Eychmüller A (2008) Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett 8:4588–4592. https://doi.org/10.1021/nl802901t

    Article  CAS  Google Scholar 

  23. Safenkova I, Zherdev A, Dzantiev B (2012) Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Anal Bioanal Chem 403:1595–1605. https://doi.org/10.1007/s00216-012-5985-8

    Article  CAS  Google Scholar 

  24. Cui X, Huang Y, Wang J et al (2015) A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157:H7. RSC Adv 5:45092–45097. https://doi.org/10.1039/C5RA06237C

    Article  CAS  Google Scholar 

  25. Serebrennikova K, Samsonova J, Osipov A (2018) Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett 10:1–8. https://doi.org/10.1007/s40820-017-0180-2

    Article  CAS  Google Scholar 

  26. Wu J, Wang X, Wang Q et al (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/C8CS00457A

    Article  CAS  Google Scholar 

  27. Zhao C, Xiong C, Liu X, Qiao M, Li Z, Yuan T, Wang J, Qu Y, Wang X, Zhou F, Xu Q, Wang S, Chen M, Wang W, Li Y, Yao T, Wu Y, Li Y (2019) Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem Commun 55:2285–2288. https://doi.org/10.1039/C9CC00199A

    Article  CAS  Google Scholar 

  28. Niu X, Shi Q, Zhu W, Liu D, Tian H, Fu S, Cheng N, Li S, Smith JN, du D, Lin Y (2019) Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron 142:111495. https://doi.org/10.1016/j.bios.2019.111495

    Article  CAS  Google Scholar 

  29. Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Gao GF, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141. https://doi.org/10.1016/j.bios.2015.05.025

    Article  CAS  Google Scholar 

  30. Safenkova IV, Slutskaya ES, Panferov VG, Zherdev AV, Dzantiev BB (2016) Complex analysis of concentrated antibody-gold nanoparticle conjugates’ mixtures using asymmetric flow field-flow fractionation. J Chromatogr A 1477:56–63. https://doi.org/10.1016/j.chroma.2016.11.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Yu.A. Varitsev (A.G. Lorch All-Russian Potato Research Institute, Korenevo, Moscow region, Russia) for providing the infected and healthy plants, N.V. Drenova (All-Russian Plant Quarantine Centre, Bykovo-2, Moscow region, Russia) for providing bacterial strains, and E.S. Slutskaya (Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia) for the ICP MS measurements.

Funding

This study was financially supported by the Russian Science Foundation (grant no. 16-16-04108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panferov, V.G., Safenkova, I.V., Zherdev, A.V. et al. Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Microchim Acta 187, 268 (2020). https://doi.org/10.1007/s00604-020-04253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04253-3

Keywords

Navigation