Skip to main content
Log in

Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Platinum-containing nanozymes with peroxidase-mimicking activity (PMA) have found a broad application in bioanalytical methods and are potentially able to compete with enzymes as the labels. However, traditionally used methods for the synthesis of nanozymes result in only a small fraction of surface-exposed Pt atoms, which participate in catalysis. To overcome this limitation, we propose a new approach for the synthesis of nanozymes with the efficient dispersion of Pt atoms on particles’ surfaces. The synthesis of nanozymes includes three steps: the synthesis of gold nanoparticles (Au NPs), the overgrowth of a silver layer over Au NPs (Au@Ag NPs, 6 types of NPs with different thicknesses of Ag shell), and the galvanic replacement of silver with PtCl62− leading to the formation of trimetallic Au@Ag-Pt NPs with uniformly deposited catalytic sites and high Pt-utilization efficiency. Au@Ag-Pt NPs (23 types of NPs with different concentrations of Pt) with various sizes, morphology, optical properties, and PMA were synthesized and comparatively tested. Using energy-dispersive spectroscopy mapping, we confirm the formation of core@shell Au@Ag NPs and dispersion of surface-exposed Pt. The selected Au@Ag-Pt NPs were conjugated with monoclonal antibodies and used as the colorimetric and catalytic labels in lateral flow immunoassay of the inflammation biomarker: C-reactive protein (CRP). The colorimetric signal enhancement was achieved by the oxidation of 3,3′-diaminobenzidine by H2O2 catalyzed by Au@Ag-Pt NPs directly on the test strip. The use of Au@Ag-Pt NPs as the catalytic label produces a 65-fold lower limit of CRP detection in serum (15 pg mL−1) compared with Au NPs and ensures the lowest limit of detection for equipment-free lateral flow immunoassays. The assay shows a high correlation with data of enzyme-linked immunosorbent assay (R2 = 0.986) and high recovery (83.7–116.2%) in serum and plasma. The assay retains all the benefits of lateral flow immunoassay as a point-of-care method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jin S, Wu C, Ye Z, Ying Y (2019) Designed inorganic nanomaterials for intrinsic peroxidase mimics: a review. Sensors Actuators B Chem 283:18–34. https://doi.org/10.1016/j.snb.2018.10.040

    Article  CAS  Google Scholar 

  2. Yang H, He Q, Chen Y, Shen D, Xiao H, Eremin SA, Cui X, Zhao S (2020) Platinum nanoflowers with peroxidase-like property in a dual immunoassay for dehydroepiandrosterone. Microchim Acta 187:592. https://doi.org/10.1007/s00604-020-04528-9

    Article  CAS  Google Scholar 

  3. Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB (2021) The steadfast Au@Pt soldier: peroxide-tolerant nanozyme for signal enhancement in lateral flow immunoassay of peroxidase-containing samples. Talanta 225:121961. https://doi.org/10.1016/j.talanta.2020.121961

    Article  CAS  PubMed  Google Scholar 

  4. Wei Z, Xi Z, Vlasov S, Ayala J, Xia X (2020) Nanocrystals of platinum-group metals as peroxidase mimics for in vitro diagnostics. Chem Commun 56:14962–14975. https://doi.org/10.1039/D0CC06575G

    Article  CAS  Google Scholar 

  5. Lori O, Elbaz L (2020) Recent advances in synthesis and utilization of ultra-low loading of precious metal-based catalysts for fuel cells. ChemCatChem 12:3434–3446. https://doi.org/10.1002/cctc.202000001

    Article  CAS  Google Scholar 

  6. Rodrigues TS, da Silva AGM, Camargo PHC (2019) Nanocatalysis by noble metal nanoparticles: controlled synthesis for the optimization and understanding of activities. J Mater Chem A 7:5857–5874. https://doi.org/10.1039/C9TA00074G

    Article  CAS  Google Scholar 

  7. Casals NGE, Ojea I, Varon M, Puntes V (2012) The reactivity of colloidal inorganic nanoparticles. In: Hashim AA (ed) The delivery of nanoparticles. IntechOpen, London, pp 377–400. https://doi.org/10.5772/35238

    Chapter  Google Scholar 

  8. Meng X, Zare I, Yan X, Fan K (2020) Protein-protected metal nanoclusters: an emerging ultra-small nanozyme. WIREs Nanomed Nanobiotechnol 12:1–21. https://doi.org/10.1002/wnan.1602

    Article  Google Scholar 

  9. Yang T, Ahn J, Shi S et al (2021) Noble-metal nanoframes and their catalytic applications. Chem Rev 121:796–833. https://doi.org/10.1021/acs.chemrev.0c00940

    Article  CAS  PubMed  Google Scholar 

  10. Gao Z, Ye H, Tang D, Tao J, Habibi S, Minerick A, Tang D, Xia X (2017) Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett 17:5572–5579. https://doi.org/10.1021/acs.nanolett.7b02385

    Article  CAS  PubMed  Google Scholar 

  11. Jiao L, Xu W, Wu Y, Yan H, Gu W, du D, Lin Y, Zhu C (2021) Single-atom catalysts boost signal amplification for biosensing. Chem Soc Rev 50:750–765. https://doi.org/10.1039/D0CS00367K

    Article  CAS  PubMed  Google Scholar 

  12. Ye H, Wang Q, Catalano M, Lu N, Vermeylen J, Kim MJ, Liu Y, Sun Y, Xia X (2016) Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett 16:2812–2817. https://doi.org/10.1021/acs.nanolett.6b00607

    Article  CAS  PubMed  Google Scholar 

  13. Xia X, Figueroa-Cosme L, Tao J, Peng HC, Niu G, Zhu Y, Xia Y (2014) Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. J Am Chem Soc 136:10878–10881. https://doi.org/10.1021/ja505716v

    Article  CAS  PubMed  Google Scholar 

  14. Bai T, Wang M, Cao M, Zhang J, Zhang K, Zhou P, Liu Z, Liu Y, Guo Z, Lu X (2018) Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Anal Bioanal Chem 410:2291–2303. https://doi.org/10.1007/s00216-018-0850-z

    Article  CAS  PubMed  Google Scholar 

  15. da Silva AGM, Rodrigues TS, Haigh SJ, Camargo PHC (2017) Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem Commun 53:7135–7148. https://doi.org/10.1039/C7CC02352A

    Article  Google Scholar 

  16. Russo L, Merkoçi F, Patarroyo J, Piella J, Merkoçi A, Bastús NG, Puntes V (2018) Time- and size-resolved plasmonic evolution with nm resolution of galvanic replacement reaction in AuAg nanoshells synthesis. Chem Mater 30:5098–5107. https://doi.org/10.1021/acs.chemmater.8b01488

    Article  CAS  Google Scholar 

  17. Londono-Calderon A, Bahena D, Yacaman MJ (2016) Controlled synthesis of Au@AgAu yolk–shell cuboctahedra with well-defined facets. Langmuir 32:7572–7581. https://doi.org/10.1021/acs.langmuir.6b01888

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Astruc D (2017) From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications in catalysis, sensing, and materials science. Adv Mater 29:1605305. https://doi.org/10.1002/adma.201605305

    Article  CAS  Google Scholar 

  19. Huang D, Lin B, Song Y, Guan Z, Cheng J, Zhu Z, Yang C (2019) Staining traditional colloidal gold test strips with Pt nanoshell enables quantitative point-of-care testing with simple and portable pressure meter readout. ACS Appl Mater Interfaces 11:1800–1806. https://doi.org/10.1021/acsami.8b15562

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Liu F, Zhu Z, Liu D, Chen X, Song Y, Zhou L, Yang C (2018) In situ Pt staining method for simple, stable, and sensitive pressure-based bioassays. ACS Appl Mater Interfaces 10:13390–13396. https://doi.org/10.1021/acsami.8b03567

    Article  CAS  PubMed  Google Scholar 

  21. Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G (2020) Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Microchim Acta 187:70. https://doi.org/10.1007/s00604-019-3822-x

    Article  CAS  Google Scholar 

  22. Yang H, Xu W, Zhou Y (2019) Signal amplification in immunoassays by using noble metal nanoparticles: a review. Microchim Acta 186:859. https://doi.org/10.1007/s00604-019-3904-9

    Article  CAS  Google Scholar 

  23. Vashist SK, Venkatesh AG, Marion Schneider E, Beaudoin C, Luppa PB, Luong JHT (2016) Bioanalytical advances in assays for C-reactive protein. Biotechnol Adv 34:272–290. https://doi.org/10.1016/j.biotechadv.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  24. Russell SM, Alba-Patiño A, Barón E, Borges M, Gonzalez-Freire M, de la Rica R (2020) Biosensors for managing the COVID-19 cytokine storm: challenges ahead. ACS Sens 5:1506–1513. https://doi.org/10.1021/acssensors.0c00979

    Article  CAS  PubMed  Google Scholar 

  25. Gao Z, Shao S, Gao W, Tang D, Tang D, Zou S, Kim MJ, Xia X (2021) Morphology-invariant metallic nanoparticles with tunable plasmonic properties. ACS Nano 15:2428–2438. https://doi.org/10.1021/acsnano.0c06123

    Article  CAS  PubMed  Google Scholar 

  26. Anfossi L, Di Nardo F, Cavalera S et al (2018) Multiplex lateral flow immunoassay: an overview of strategies towards high-throughput point-of-need testing. Biosensors 9:2. https://doi.org/10.3390/bios9010002

    Article  CAS  PubMed Central  Google Scholar 

  27. Merkoçi F, Patarroyo J, Russo L, Piella J, Genç A, Arbiol J, Bastús NG, Puntes V (2020) Understanding galvanic replacement reactions: the case of Pt and Ag. Mater Today Adv 5:100037. https://doi.org/10.1016/j.mtadv.2019.100037

    Article  Google Scholar 

  28. Gao Z, Tang D, Tang D, Niessner R, Knopp D (2015) Target-induced nanocatalyst deactivation facilitated by core@shell nanostructures for signal-amplified headspace-colorimetric assay of dissolved hydrogen sulfide. Anal Chem 87:10153–10160. https://doi.org/10.1021/acs.analchem.5b03008

    Article  CAS  PubMed  Google Scholar 

  29. González E, Merkoçi F, Arenal R, Arbiol J, Esteve J, Bastús NG, Puntes V (2016) Enhanced reactivity of high-index surface platinum hollow nanocrystals. J Mater Chem A 4:200–208. https://doi.org/10.1039/C5TA07504A

    Article  CAS  Google Scholar 

  30. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076. https://doi.org/10.1039/C8CS00457A

    Article  CAS  PubMed  Google Scholar 

  31. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13:1506–1520. https://doi.org/10.1038/s41596-018-0001-1

    Article  CAS  PubMed  Google Scholar 

  32. Di Nardo F, Cavalera S, Baggiani C et al (2019) Direct vs mediated coupling of antibodies to gold nanoparticles: the case of salivary cortisol detection by lateral flow immunoassay. ACS Appl Mater Interfaces 11:32758–32768. https://doi.org/10.1021/acsami.9b11559

    Article  CAS  PubMed  Google Scholar 

  33. Loynachan CN, Thomas MR, Gray ER, Richards DA, Kim J, Miller BS, Brookes JC, Agarwal S, Chudasama V, McKendry RA, Stevens MM (2018) Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12:279–288. https://doi.org/10.1021/acsnano.7b06229

    Article  CAS  PubMed  Google Scholar 

  34. Guo J, Chen S, Tian S, Liu K, Ma X, Guo J (2021) A sensitive and quantitative prognosis of C-reactive protein at picogram level using mesoporous silica encapsulated core-shell up-conversion nanoparticle based lateral flow strip assay. Talanta 230:122335. https://doi.org/10.1016/j.talanta.2021.122335

    Article  CAS  PubMed  Google Scholar 

  35. Rong Z, Xiao R, Xing S, Xiong G, Yu Z, Wang L, Jia X, Wang K, Cong Y, Wang S (2018) SERS-based lateral flow assay for quantitative detection of C-reactive protein as an early bio-indicator of a radiation-induced inflammatory response in nonhuman primates. Analyst 143:2115–2121. https://doi.org/10.1039/C8AN00160J

    Article  CAS  PubMed  Google Scholar 

  36. Dhara K, Roy D (2020) Review on electrochemical sensing strategies for C-reactive protein and cardiac troponin I detection. Microchem J 156:104857. https://doi.org/10.1016/j.microc.2020.104857

    Article  CAS  Google Scholar 

  37. Kokorina AA, Ponomaryova TS, Goryacheva IY (2021) Photoluminescence-based immunochemical methods for determination of C-reactive protein and procalcitonin. Talanta 224:121837. https://doi.org/10.1016/j.talanta.2020.121837

    Article  CAS  PubMed  Google Scholar 

  38. Ma Y, Yang J, Yang T, Deng Y, Gu M, Wang M, Hu R, Yang Y (2020) Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles / graphene oxide as a tag. RCS Adv 10:9723–9729. https://doi.org/10.1039/c9ra10386d

    Article  CAS  Google Scholar 

  39. Li B, Ge L, Lyu P, Chen M, Zhang X, Xie S, Wu Q, Kwok HF (2021) Handheld pH meter–assisted immunoassay for C-reactive protein using glucose oxidase–conjugated dendrimer loaded with platinum nanozymes. Microchim Acta 188:14. https://doi.org/10.1007/s00604-020-04687-9

    Article  CAS  Google Scholar 

  40. Boonkaew S, Chaiyo S, Jampasa S, Rengpipat S, Siangproh W, Chailapakul O (2019) An origami paper-based electrochemical immunoassay for the C-reactive protein using a screen-printed carbon electrode modified with graphene and gold nanoparticles. Microchim Acta 186:153. https://doi.org/10.1007/s00604-019-3245-8

    Article  CAS  Google Scholar 

  41. Xie J, Tang M-Q, Chen J, Zhu YH, Lei CB, He HW, Xu XH (2020) A sandwich ELISA-like detection of C-reactive protein in blood by citicoline-bovine serum albumin conjugate and aptamer-functionalized gold nanoparticles nanozyme. Talanta 217:121070. https://doi.org/10.1016/j.talanta.2020.121070

    Article  CAS  PubMed  Google Scholar 

  42. Panraksa Y, Apilux A, Jampasa S, Puthong S, Henry CS, Rengpipat S, Chailapakul O (2021) A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection. Sensors Actuators B Chem 329:129241. https://doi.org/10.1016/j.snb.2020.129241

    Article  CAS  Google Scholar 

  43. Young B, Gleeson M, Cripps AW (1991) C-reactive protein: a critical review. Pathology 23:118–124

    Article  CAS  Google Scholar 

  44. Kolb-Bachofen V (1991) A review on the biological properties of C- reactive protein. Immunobiol 183:133–145. https://doi.org/10.1016/S0171-2985(11)80193-2

    Article  CAS  Google Scholar 

  45. Ledue TB, Rifai N (2003) Preanalytic and analytic sources of variations in C-reactive protein measurement : implications for cardiovascular disease risk assessment. Clin Chem 1271:1258–1271

    Article  Google Scholar 

  46. Lei BUW, Prow TW (2019) A review of microsampling techniques and their social impact. Biomed Microdevices 21:81. https://doi.org/10.1007/s10544-019-0412-y

    Article  PubMed  PubMed Central  Google Scholar 

  47. Castelli GP, Pognani C, Meisner M, Stuani A, Bellomi D, Sgarbi L (2004) Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care 8:234–242. https://doi.org/10.1186/cc2877

    Article  Google Scholar 

  48. Jiang B, Fang L, Wu K, Yan X, Fan K (2020) Ferritins as natural and artificial nanozymes for theranostics. Theranostics 10:687–706. https://doi.org/10.7150/thno.39827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Konstantin M. Boyko (Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences) for the organizational assistance.

Funding

This study was financially supported by the Russian Science Foundation (grant number 19-14-00370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris B. Dzantiev.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 4545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panferov, V.G., Byzova, N.A., Zherdev, A.V. et al. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Microchim Acta 188, 309 (2021). https://doi.org/10.1007/s00604-021-04968-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04968-x

Keywords

Navigation