Skip to main content
Log in

Boosting reversible charging of Li-ion batteries at low temperatures by a synergy of propylene carbonate-based electrolyte and defective graphite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Propylene carbonate (PC)-based electrolytes have exhibited significant advantages in boosting the low-temperature discharging of graphite-based Li-ion batteries. However, it is still unclear whether they can improve the charging property and suppress lithium plating. Studying this topic is challenging due to the problem of electrochemical compatibility. To overcome this issue, we introduced graphite with phase defects. The results show that the pouch-type full batteries using PC-based electrolyte exhibit steady performance over 500 cycles and can be reversibly charged over 30 times at −20 °C with an average Coulombic efficiency of 99.95%, while the corresponding value for the conventional ethylene carbonate (EC)-based electrolyte sample is only 31.20%. This indicates that the use of PC-based electrolyte significantly suppresses lithium plating during low-temperature charging. We further demonstrate that the improved performance is mainly attributed to the unique solvation structure, where more \({\rm{PF}}_6^ -\) anions participate in solvation, leading to the formation of a stable F-rich solid state electrolyte interface on the graphite surface and a lower reduction tendency of Li+ ions. This work inspires new ideas for the design of PC-based electrolytes for low-temperature charging and fast-charging batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

    Article  ADS  Google Scholar 

  2. Gupta, A.; Manthiram, A. Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 2020, 10, 2001972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, Y. Q.; Xie, L. Q.; Ming, H.; Guo, Y. J.; Hwang, J. Y.; Wang, W. X.; He, X. M.; Wang, L. M.; Alshareef, H. N.; Sun, Y. K. et al. An empirical model for the design of batteries with high energy density. ACS Energy Lett. 2020, 5, 807–816.

    Article  CAS  Google Scholar 

  4. Song, Y. Z.; Liu, X.; Ren, D. S.; Liang, H. M.; Wang, L.; Hu, Q.; Cui, H.; Xu, H.; Wang, J. L.; Zhao, C. et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 2022, 34, 2106335.

    Article  CAS  Google Scholar 

  5. Song, Y. Z.; Wang, L.; Cui, H.; Liang, H. M.; Hu, Q.; Ren, D. S.; Yang, Y.; Zhang, H.; Xu, H.; He, X. M. Boosting battery safety by mitigating thermal-induced crosstalk with a Bi-continuous separator. Adv. Energy Mater. 2022, 12, 2201964.

    Article  CAS  Google Scholar 

  6. Zhang, N.; Deng, T.; Zhang, S. Q.; Wang, C. H.; Chen, L. X.; Wang, C. S.; Fan, X. L. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, 2107899.

    Article  CAS  Google Scholar 

  7. Hubble, D.; Brown, D. E.; Zhao, Y. Z.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 2022, 15, 550–578.

    Article  CAS  Google Scholar 

  8. Fan, J.; Tan, S. Studies on charging lithium-ion cells at low temperatures. J. Electrochem. Soc. 2006, 153, A1081–A1092.

    Article  CAS  Google Scholar 

  9. Cho, Y. G.; Li, M. Q.; Holoubek, J.; Li, W. K.; Yin, Y. J.; Meng, Y. S.; Chen, Z. Enabling the low-temperature cycling of NMC‖graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 2021, 6, 2016–2023.

    Article  CAS  Google Scholar 

  10. Petzl, M.; Kasper, M.; Danzer, M. A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study. J. Power Sources 2015, 275, 799–807.

    Article  ADS  CAS  Google Scholar 

  11. von Lüders, C.; Zinth, V.; Erhard, S. V.; Osswald, P. J.; Hofmann, M.; Gilles, R.; Jossen, A. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction. J. Power Sources 2017, 342, 17–23.

    Article  ADS  Google Scholar 

  12. Zhang, G. X.; Wei, X. Z.; Han, G. S.; Dai, H. F.; Zhu, J. G.; Wang, X. Y.; Tang, X.; Ye, J. P. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. J. Power Sources 2021, 484, 229312.

    Article  CAS  Google Scholar 

  13. Piao, N.; Gao, X. N.; Yang, H. C.; Guo, Z. Q.; Hu, G. J.; Cheng, H. M.; Li, F. Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 2022, 11, 100145.

    Article  Google Scholar 

  14. Li, Q.; Liu, G.; Cheng, H. R.; Sun, Q. J.; Zhang, J. L.; Ming, J. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges. Chem.—Eur. J. 2021, 27, 15842–15865.

    Article  CAS  PubMed  Google Scholar 

  15. Li, Q. Y.; Lu, D. P.; Zheng, J. M.; Jiao, S. H.; Luo, L. L.; Wang, C. M.; Xu, K.; Zhang, J. G.; Xu, W. Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 2017, 9, 42761–42768.

    Article  CAS  PubMed  Google Scholar 

  16. Sun, C. C.; Ji, X.; Weng, S. T.; Li, R. H.; Huang, X. T.; Zhu, C. N.; Xiao, X. Z.; Deng, T.; Fan, L. W.; Chen, L. X. et al. 50 C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 2022, 34, 2206020.

    Article  CAS  Google Scholar 

  17. Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 2007, 111, 7411–7421.

    Article  CAS  Google Scholar 

  18. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

    Article  CAS  PubMed  Google Scholar 

  19. Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 2018, 8, 1800802.

    Article  Google Scholar 

  20. Deng, X. H.; Zhang, S.; Chen, C.; Lan, Q. H.; Yang, G. Z.; Feng, T. T.; Zhou, H. P.; Wang, H. Y.; Xu, Z. Q.; Wu, M. Q. Rational design of electrolytes operating at low temperatures: Does the co-solvent with a lower melting point correspond to better performance? Electrochim. Acta 2022, 415, 140268.

    Article  CAS  Google Scholar 

  21. Yoo, D. J.; Liu, Q.; Cohen, O.; Kim, M.; Persson, K. A.; Zhang, Z. C. Understanding the role of SEI layer in low-temperature performance of lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 11910–11918.

    Article  CAS  PubMed  Google Scholar 

  22. Ramasamy, H. V.; Kim, S.; Adams, E. J.; Rao, H.; Pol, V. G. A novel cyclopentyl methyl ether electrolyte solvent with a unique solvation structure for subzero (−40 °C) lithium-ion batteries. Chem. Commun. 2022, 58, 5124–5127.

    Article  CAS  Google Scholar 

  23. Qian, Y. X.; Chu, Y. L.; Zheng, Z. T.; Shadike, Z.; Han, B.; Xiang, S. H.; Kang, Y. Y.; Hu, S. G.; Cao, C. W.; Zhong, L. et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries. Energy Storage Mater. 2022, 45, 14–23.

    Article  Google Scholar 

  24. Kim, J.; Adiraju, V. A. K.; Chae, O. B.; Lucht, B. L. Lithium bis(trimethylsilyl) phosphate as an electrolyte additive to improve the low-temperature performance for LiNi0.8Co0.1Mn0.1O2/graphite cells. J. Electrochem. Soc. 2021, 168, 080538.

    Article  ADS  CAS  Google Scholar 

  25. Klein, S.; van Wickeren, S.; Röser, S.; Bärmann, P.; Borzutzki, K.; Heidrich, B.; Börner, M.; Winter, M.; Placke, T.; Kasnatscheew, J. Understanding the outstanding high-voltage performance of NCM523‖graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte. Adv. Energy Mater. 2021, 11, 2003738.

    Article  CAS  Google Scholar 

  26. Ma, L.; Glazier, S. L.; Petibon, R.; Xia, J.; Peters, J. M.; Liu, Q.; Allen, J.; Doig, R. N. C.; Dahn, J. R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. J. Electrochem. Soc. 2017, 164, A5008–A5018.

    Article  CAS  Google Scholar 

  27. Zou, Y. G.; Shen, Y. B.; Wu, Y. Q.; Xue, H. J.; Guo, Y. J.; Liu, G.; Wang, L. M.; Ming, J. A designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis. Chem.—Eur. J. 2020, 26, 7930–7936.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Q. Q.; Xiong, D. J.; Petibon, R.; Du, C. Y.; Dahn, J. R. Gas evolution during unwanted lithium plating in Li-ion cells with EC-based or EC-free electrolytes. J. Electrochem. Soc. 2016, 163, A3010–A3015.

    Article  CAS  Google Scholar 

  29. Chen, L. H.; Shu, J.; Huang, Y. B.; Shi, Z. P.; Luo, H.; Liu, Z. P.; Shen, C. Engineering solid electrolyte interphase for the application of propylene carbonate solvent for graphite anode in low temperate battery. Appl. Surf. Sci. 2022, 598, 153740.

    Article  CAS  Google Scholar 

  30. Doi, T.; Shimizu, Y.; Hashinokuchi, M.; Inaba, M. Dilution of highly concentrated LiBF4/propylene carbonate electrolyte solution with fluoroalkyl ethers for 5-V LiNi0.5Mn1.5O4 positive electrodes. J. Electrochem. Soc. 2017, 164, A6412–A6416.

    Article  CAS  Google Scholar 

  31. Nie, M. Y.; Abraham, D. P.; Seo, D. M.; Chen, Y. J.; Bose, A.; Lucht, B. L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J. Phys. Chem. C 2013, 117, 25381–25389.

    Article  CAS  Google Scholar 

  32. Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. W.; Kim, M. H. Origin of graphite exfoliation an investigation of the important role of solvent cointercalation. J. Electrochem. Soc. 2000, 147, 4391.

    Article  ADS  CAS  Google Scholar 

  33. Gnanaraj, J. S.; Thompson, R. W.; DiCarlo, J. F.; Abraham, K. M. The role of carbonate solvents on lithium intercalation into graphite. J. Electrochem. Soc. 2007, 154, A185.

    Article  CAS  Google Scholar 

  34. Guerin, K.; Fevrier-Bouvier, A.; Flandrois, S.; Couzi, M.; Simon, B.; Biensan, P. Effect of graphite crystal structure on lithium electrochemical intercalation. J. Electrochem. Soc. 1999, 146, 3660–3665.

    Article  ADS  CAS  Google Scholar 

  35. Simon, B.; Flandrois, S.; Fevrier-bouvier, A.; Biensan, P. Hexagonal vs. rhombohedral graphite: The effect of crystal structure on electrochemical intercalation of lithium ions. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1998, 310, 333–340.

    Article  CAS  Google Scholar 

  36. Spahr, M. E.; Wilhelm, H.; Palladino, T.; Dupont-Pavlovsky, N.; Goers, D.; Joho, F.; Novák, P. The role of graphite surface group chemistry on graphite exfoliation during electrochemical lithium insertion. J. Power Sources 2003, 119–121, 543–549.

    Article  Google Scholar 

  37. Kohs, W.; Santner, H. J.; Hofer, F.; Schröttner, H.; Doninger, J.; Barsukov, I.; Buqa, H.; Albering, J. H.; Möller, K. C.; Besenhard, J. O. et al. A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase. J. Power Sources 2003, 119–121, 528–537.

    Article  Google Scholar 

  38. Fan, H. M.; Liu, X. W.; Luo, L. B.; Zhong, F. P.; Cao, Y. L. All-climate high-voltage commercial lithium-ion batteries based on propylene carbonate electrolytes. ACS Appl. Mater. Interfaces 2022, 14, 574–580.

    Article  CAS  PubMed  Google Scholar 

  39. Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364.

    Article  CAS  Google Scholar 

  40. Sun, H.; Ren, P.; Fried, J. R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246.

    Article  CAS  Google Scholar 

  41. Sun, H.; Jin, Z.; Yang, C. W.; Akkermans, R. L. C.; Robertson, S. H.; Spenley, N. A.; Miller, S.; Todd, S. M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47.

    Article  PubMed  Google Scholar 

  42. Sodeyama, K.; Yamada, Y.; Aikawa, K.; Yamada, A.; Tateyama, Y. Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte. J. Phys. Chem. C 2014, 118, 14091–14097.

    Article  CAS  Google Scholar 

  43. Xu, H.; Gao, J.; Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.

    Article  CAS  PubMed  Google Scholar 

  44. Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Chou, C. P.; Sakti, A. W.; Nishimura, Y.; Nakai, H. Development of divide-and-conquer density-functional tight-binding method for theoretical research on Li-ion battery. Chem. Rec. 2019, 19, 746–757.

    Article  CAS  PubMed  Google Scholar 

  47. Sheng, L.; Wu, Y. Z.; Tian, J. K.; Wang, L.; Wang, J. L.; Tang, Y. P.; Xu, H.; He, X. M. Impact of lithium-ion coordination on lithium electrodeposition. Energy Environ. Mater. 2023, 6, e12266.

    Article  CAS  Google Scholar 

  48. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    Article  ADS  Google Scholar 

  49. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

    Article  ADS  CAS  Google Scholar 

  50. Habedank, J. B.; Kriegler, J.; Zaeh, M. F. Enhanced fast charging and reduced lithium-plating by laser-structured anodes for lithiumion batteries. J. Electrochem. Soc. 2019, 166, A3940–A3949.

    Article  CAS  Google Scholar 

  51. Bugga, R. V.; Smart, M. C. Lithium plating behavior in lithium-ion cells. ECS Trans. 2010, 25, 241–252.

    Article  Google Scholar 

  52. Wu, Y. Q.; Li, M. L.; Wahyudi, W.; Sheng, G.; Miao, X. H.; Anthopoulos, T. D.; Huang, K. W.; Li, Y. X.; Lai, Z. P. Performance and stability improvement of layered NCM lithium-ion batteries at high voltage by a microporous Al2O3 sol–gel coating. ACS Omega 2019, 4, 13972–13980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hou, P. Y.; Zhang, H. Z.; Deng, X. L.; Xu, X. J.; Zhang, L. Q. Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 29643–29653.

    Article  CAS  PubMed  Google Scholar 

  54. Chen, X.; Zhang, Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 2020, 53, 1992–2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22279071, 22279070, 52073161, and U21A20170), the Ministry of Science and Technology of the People’s Republic of China (Nos. 2019YFA0705703 and 2019YFE0100200), and Postdoctoral Research Foundation of China (No. 2021M701873).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Sheng, Siqi Shi or Xiangming He.

Electronic Supplementary Material

12274_2023_5968_MOESM1_ESM.pdf

Boosting reversible charging of Li-ion batteries at low temperatures by a synergy of propylene carbonate-based electrolyte and defective graphite

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, J., Liu, J. et al. Boosting reversible charging of Li-ion batteries at low temperatures by a synergy of propylene carbonate-based electrolyte and defective graphite. Nano Res. 17, 1491–1499 (2024). https://doi.org/10.1007/s12274-023-5968-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5968-4

Keywords

Navigation