Skip to main content
Log in

COMPASS II: extended coverage for polymer and drug-like molecule databases

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The COMPASS II force field has been developed by extending the coverage of the COMPASS force field (J Phys Chem B 102(38):7338–7364, 1998) to polymer and drug-like molecules found in popular databases. Using a fragmentation method to systematically construct small molecules that exhibit key functional groups found in these databases, parameters applicable to database compounds were efficiently obtained. Based on the same parameterization paradigm as used in the development of the COMPASS force field, new parameters were derived by a combination of fits to quantum mechanical data for valence parameters and experimental liquid and crystal data for nonbond parameters. To preserve the quality of the original COMPASS parameters, a quality assurance suite was used and updated to ensure that additional atom-types and parameters do not interfere with the existing ones. Validation against molecular properties, liquid and crystal densities, and enthalpies, demonstrates that the quality of COMPASS is preserved and the same quality of prediction is achieved for the additional coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364

    Article  CAS  Google Scholar 

  2. McQuaid MJ, Sun H, Rigby D (2003) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25(1):61–71

    Article  Google Scholar 

  3. Yang J, Ren Y, A-m T, Sun H (2000) COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases. J Phys Chem B 104(20):4951–4957

    Article  CAS  Google Scholar 

  4. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104(11):2477–2489

    Article  CAS  Google Scholar 

  5. Sun H, Ren P, Fried J (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8(1):229–246

    Article  CAS  Google Scholar 

  6. Sun H, Rigby D (1997) Polysiloxanes: ab initio force field and structural, conformational and thermophysical properties. Spectrochim Acta A Mol Biomol Spectrosc 53(8):1301–1323

    Article  Google Scholar 

  7. Rigby D, Sun H, Eichinger B (1997) Computer simulations of poly (ethylene oxide): force field, PVT diagram and cyclization behaviour. Polym Int 44(3):311–330

    Article  CAS  Google Scholar 

  8. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  CAS  Google Scholar 

  9. Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102(14):2569–2577

    Article  CAS  Google Scholar 

  10. Wang J, Hou T (2011) Application of molecular dynamics simulations in molecular property prediction. 1. Density and heat of vaporization. J Chem Theory Comput 7(7):2151–2165

    Article  CAS  Google Scholar 

  11. Heinz H, Lin T-J, Kishore Mishra R, Emami FS (2012) Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29(6):1754–1765

    Article  Google Scholar 

  12. Hwang MJ, Stockfisch TP, Hagler AT (1994) Derivation of class II force fields. 2. Derivation and characterization of a class II force field, CFF93, for the alkyl functional group and alkane molecules. J Am Chem Soc 116(6):2515–2525

    Article  CAS  Google Scholar 

  13. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641

    Article  CAS  Google Scholar 

  14. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    Article  CAS  Google Scholar 

  15. BIOVIA (2015) COMPASS, COMPASS-II, Forcite, Discover and Materials Studio software. BIOVIA, San Diego, CA. http://accelrys.com/products/collaborative-science/biovia-materials-studio/

  16. MacKerell AD, Banavali NK (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21(2):105–120

    Article  CAS  Google Scholar 

  17. Materials Database Group (2015) PolyInfo databased. Materials Database Group, Tsukuba, Ibaraki, Japan. http://polymer.nims.go.jp/index_en.html

  18. Maybridge Screening Collection (2015) Maybridge screening collection. http://www.maybridge.com

  19. Riley KE, Op’t Holt BT, Merz KM (2007) Critical assessment of the performance of density functional methods for several atomic and molecular properties. J Chem Theory Comput 3(2):407–433

    Article  CAS  Google Scholar 

  20. Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, Hagler AT (1994) Derivation of class II force fields. I Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 15(2):162–182

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  22. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes 3rd edition: the art of scientific computing. Cambridge University Press, London

    Google Scholar 

  23. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  25. Samoletov AA, Dettmann CP, Chaplain MA (2007) Thermostats for “slow” configurational modes. J Stat Phys 128(6):1321–1336

    Article  Google Scholar 

  26. Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  27. Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comput Chem 17(5-6):520–552

    Article  CAS  Google Scholar 

  28. CCDC (2015) ​​The Cambridge Crystallographic Data Centre (CCDC). https://www.ccdc.cam.ac.uk/

  29. Parrinello M, Rahman A (1980) Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett 45(14):1196

    Article  CAS  Google Scholar 

  30. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  31. Chickos JS, Acree WE (2002) Enthalpies of sublimation of organic and organometallic compounds. 1910–2001. J Phys Chem Ref Data 31(2):537–698

    Article  CAS  Google Scholar 

  32. Bernardes CES, Joseph A (2015) Evaluation of the OPLS-AA force field for the study of structural and energetic aspects of molecular organic crystals. J Phys Chem A 119(12):3023–3034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Access to the Cambridge Structural Database was kindly provided by the Cambridge Crystallographic Data Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Jin, Z., Yang, C. et al. COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model 22, 47 (2016). https://doi.org/10.1007/s00894-016-2909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2909-0

Keywords

Navigation