Skip to main content
Log in

Highly efficient 1D p-Te/2D n-Bi2Te3 heterojunction self-driven broadband photodetector

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Broadband photodetectors with self-driven functions have attracted intensive scientific interest due to their low energy consumption and high optical gain. However, high-performance broadband self-driven photodetectors are still a significant challenge due to the complex fabrication processes, environmental toxicity, high production costs of traditional 3D semiconductor materials and sharply raised contact resistance, severe interfacial recombination of 2D materials and 2D/3D mixed dimension heterojunction. Here, 1D p-Te/2D n-Bi2Te3 heterojunctions are constructed by the simple and low-cost hydrothermal method. 1D p-Te/2D n-Bi2Te3 devices are applied in photoelectrochemical (PEC) photodetectors, with their high performance attributed to the good interfacial contacts reducing interface recombination. The device demonstrated a broad wavelength range (365–850 nm) with an/ph//dark as high as 377.45. The RiD*, and external quantum efficiency (EQE) values of the device were as high as 12.07 mA/W, 5.87 × 1010 Jones, and 41.05%, respectively, which were significantly better than the performance of the prepared Bi2Te3 and Te devices. A comparison of the freshly fabricated device and the device after 30 days showed that 1D p-Te/2D n-Bi2Te3 had excellent stability with only 18.08% decay of photocurrent. It is anticipated that this work will provide new emerging material for future design and preparation of a high-performance self-driven broadband photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, Z.; Zhang, H.; Khan, K.; Cao, R.; Zhang, Y.; Ma, C. Y.; Tareen, A. K.; Jiang, Y. F.; Jin, M. X.; Zhang, H. Two-dimensional materials toward terahertz optoelectronic device applications. J. Photochem. Photobiol. C:Photochem. Rev. 2022, 51, 100473.

    Article  CAS  Google Scholar 

  2. Yadav, P. V. K.; Ajitha, B.; Kumar Reddy, Y. A.; Sreedhar, A. Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. Chemosphere 2021, 279, 130473.

    Article  CAS  PubMed  Google Scholar 

  3. Lukman, S.; Ding, L.; Xu, L.; Tao, Y.; Riis-Jensen, A. C.; Zhang, G.; Wu, Q. Y. S.; Yang, M.; Luo, S.; Hsu, C. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675–682.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Zhang, X. C.; Liu, X. C.; Zhang, C. Y.; Peng, S. L.; Zhou, H. X.; He, L.; Gou, J.; Wang, X. R.; Wang, J. Epitaxial topological insulator Bi2Te3 for fast visible to mid-infrared heterojunction photodetector by graphene As charge collection medium. ACS Nano 2022, 16, 4851–4860.

    Article  CAS  PubMed  Google Scholar 

  5. Sun, H. H.; Jiang, T.; Zang, Y. Y.; Zheng, X.; Gong, Y.; Yan, Y.; Xu, Z. J.; Liu, Y.; Fang, L.; Cheng, X. A. et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures. Nanoscale 2017, 9, 9325–9332.

    Article  CAS  PubMed  Google Scholar 

  6. Yu, W. Z.; Dong, Z.; Mu, H. R.; Ren, G. H.; He, X. Y.; Li, X.; Lin, S. H.; Zhang, K.; Bao, Q. L.; Mokkapati, S. Wafer-scale synthesis of 2D dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 2022, 16, 12922–12929.

    Article  CAS  PubMed  Google Scholar 

  7. Linder, J.; Tanaka, Y.; Yokoyama, T.; Sudbø, A.; Nagaosa, N. Unconventional superconductivity on a topological insulator. Phys. Rev. Lett. 2010, 104, 067001.

    Article  PubMed  ADS  Google Scholar 

  8. Qin, H. L.; Guo, B.; Wang, L. J.; Zhang, M.; Xu, B. C.; Shi, K. G.; Pan, T. L.; Zhou, L.; Chen, J. S.; Qiu, Y. et al. Superconductivity in single-quintuple-layer Bi2Te3 grown on epitaxial FeTe. Nano Lett. 2020, 20, 3160–3168.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Charpentier, S.; Galletti, L.; Kunakova, G.; Arpaia, R.; Song, Y. X.; Baghdadi, R.; Wang, S. M.; Kalaboukhov, A.; Olsson, E.; Tafuri, F. et al. Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator. Nat. Commun. 2017, 8, 2019.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  10. Sharma, S.; Schwingenschlögl, U. Thermoelectric response in single quintuple layer Bi2Te3. ACS Energy Lett. 2016, 1, 875–879.

    Article  CAS  Google Scholar 

  11. Mamur, H.; Bhuiyan, M. R. A.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 2018, 82, 4159–4169.

    Article  CAS  Google Scholar 

  12. Zhu, B.; Wang, W.; Cui, J.; He, J. Q. Point defect engineering: Co-doping synergy realizing superior performance in n-type Bi2Te3 thermoelectric materials. Small 2021, 17, 2101328.

    Article  CAS  Google Scholar 

  13. Zhu, Y. K.; Guo, J.; Chen, L.; Gu, S. W.; Zhang, Y. X.; Shan, Q.; Feng, J.; Ge, Z. H. Simultaneous enhancement of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing. Chem. Eng. J. 2021, 407, 126407.

    Article  CAS  Google Scholar 

  14. Lou, L. Y.; Yang, J. M.; Zhu, Y. K.; Liang, H.; Zhang, Y. X.; Feng, J.; He, J. Q.; Ge, Z. H.; Zhao, L. D. Tunable electrical conductivity and simultaneously enhanced thermoelectric and mechanical properties in n-type Bi2Te3. Adv. Sci. 2022, 9, 2203250.

    Article  CAS  Google Scholar 

  15. Wang, Y.; Xiu, F.; Cheng, L. N.; He, L.; Lang, M. R.; Tang, J. S.; Kou, X. F.; Yu, X. X.; Jiang, X. W.; Chen, Z. G. et al. Gate-controlled surface conduction in Na-doped Bi2Te3 topological insulator nanoplates. Nano Lett. 2012, 12, 1170–1175.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Zhang, H. B.; Zhang, X. J.; Liu, C.; Lee, S. T.; Jie, J. S. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma, A.; Srivastava, A. K.; Senguttuvan, T. D.; Husale, S. Robust broad spectral photodetection (UV-NIR) and ultra high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling condition. Sci. Rep. 2017, 7, 17911.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  18. Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y.; Zhang, F.; Xu, Y. G.; Huang, W. C.; Wu, L. M.; Dong, Z. J.; Zhang, Y. P.; Dong, B. Q.; Zhang, X. W.; Zhang, H. Epitaxial growth of topological insulators on semiconductors (Bi2Se3/Te@Se) toward high-performance photodetectors. Small Methods 2019, 3, 1900349.

    Article  CAS  Google Scholar 

  20. Liu, H. W.; Zhu, X. L.; Sun, X. X.; Zhu, C. G.; Huang, W.; Zhang, X. H.; Zheng, B. Y.; Zou, Z. X.; Luo, Z. Y.; Wang, X. et al. Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p-n heterojunctions. ACS Nano 2019, 13, 13573–13580.

    Article  CAS  PubMed  Google Scholar 

  21. Yao, J. D.; Yang, G. W. Flexible and high-performance All-2D photodetector for wearable devices. Small 2018, 14, 1704524.

    Article  Google Scholar 

  22. Yang, M.; Wang, J.; Zhao, Y. F.; He, L.; Ji, C. H.; Liu, X. C.; Zhou, H. X.; Wu, Z. M.; Wang, X. R.; Jiang, Y. D. Three-dimensional topological insulator Bi2Te3/organic thin film heterojunction photodetector with fast and wideband response from 450 to 3500 nanometers. ACS Nano 2010, 13, 755–763.

    Article  Google Scholar 

  23. Hasani, A.; Mohammadzadeh, M. R.; Ghanbari, H.; Fawzy, M.; De Silva, T.; Abnavi, A.; Ahmadi, R.; Askar, A. M.; Kabir, F.; Rajapakse, R. K. N. D. et al. Self-powered, broadband photodetector based on two-dimensional tellurium-silicon heterojunction. ACS Omega 2022, 7, 48383–48390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo, Z. T.; Xu, H. K.; Gao, W.; Yang, M. M.; He, Y.; Huang, Z. H.; Yao, J. D.; Zhang, M. L.; Dong, H. F.; Zhao, Y. et al. Highperformance and polarization-sensitive imaging photodetector based on WS2/Te tunneling heterostructure. Small 2023, 19, 2207615.

    Article  CAS  Google Scholar 

  25. Yao, J. R.; Chen, F. F.; Li, J. J.; Du, J. L.; Wu, D.; Tian, Y. T.; Zhang, C.; Yang, J. K.; Li, X. J.; Lin, P. A high-performance shortwave infrared phototransistor based on a 2D tellurium/MoS2 van der Waals heterojunction. J. Mater. Chem. C 2021, 9, 13123–13131.

    Article  CAS  Google Scholar 

  26. Yan, Y. X.; Li, Z. X.; Li, L. L.; Lou, Z. Stereopsis-inspired 3D visual imaging system based on 2D ruddlesden-popper perovskite. Small 2023, e2300831.

    Google Scholar 

  27. Li, X. Z.; Wei, Y.; Wang, Z. J.; Kong, Y.; Su, Y. P.; Lu, G. T.; Mei, Z.; Su, Y.; Zhang, G. Q.; Xiao, J. H. et al. One-dimensional semimetal contacts to two-dimensional semiconductors. Nat. Commun. 2023, 14, 111.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212.

    Article  CAS  PubMed  Google Scholar 

  29. Gan, X. T.; Li, J. J.; Xu, M. Z.; Wang, X. W.; Liu, Z.; Zhao, J. L. Giant and anisotropic nonlinear optical responses of 1D van der waals material tellurium. Adv. Opt. Mater. 2020, 8, 2001273.

    Article  CAS  Google Scholar 

  30. Guo, S. Y.; Xu, H.; Zheng, Y. Q.; Li, L. L.; Li, Z. X.; Zhang, L.; Zhang, H. B.; Wang, X. B.; Li, J. H.; Wang, L. L. et al. Stretchable reconfigurable logic gate based on near-infrared photoelectric modulation. Nano Energy 2023, 110, 108361.

    Article  CAS  Google Scholar 

  31. Mo, M.; Zeng, J.; Liu, X.; Yu, W.; Zhang, S.; Qian, Y. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv. Mater. 2002, 22, 1658–1662.

    Article  Google Scholar 

  32. Li, C.; Zhang, L.; Gong, T.; Cheng, Y. F.; Li, L. Y.; Li, L.; Jia, S. F.; Qi, Y. J.; Wang, J. B.; Gao, Y. H. Study of the growth mechanism of solution-synthesized symmetric tellurium nanoflakes at atomic resolution. Small 2021, 17, 2005801.

    Article  CAS  Google Scholar 

  33. Zhu, H. T.; Luo, J.; Liang, J. K. Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric properties. J. Mater. Chem. A 2014, 2, 12821–12826.

    Article  CAS  Google Scholar 

  34. Feng, J. J.; Wang, H. C.; Guo, L.; Su, W. B.; Zhao, L. W.; Li, G. Y.; Chen, T. T.; Wang, C. L.; Dang, F. Stacking surface derived catalytic capability and by-product prevention for high efficient two dimensional Bi2Te3 cathode catalyst in Li-oxygen batteries. Appl. Catal. B:Environ. 2022, 318, 121844.

    Article  CAS  Google Scholar 

  35. Fei, F. C.; Wei, Z. X.; Wang, Q. J.; Lu, P. C.; Wang, S. B.; Qin, Y. Y.; Pan, D. F.; Zhao, B.; Wang, X. F.; Sun, J. et al. Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates. Nano Lett. 2015, 15, 5905–5911.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  CAS  Google Scholar 

  37. Lu, Q.; Gao, F.; Komarneni, S. Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv. Mater. 2004, 16, 1629–1632.

    Article  CAS  Google Scholar 

  38. Zheng, B. N.; Wu, Z. H.; Guo, F.; Ding, R.; Mao, J. F.; Xie, M. H.; Lau, S. P.; Hao, J. H. Large-area tellurium/germanium heterojunction grown by molecular beam epitaxy for highperformance self-powered photodetector. Adv. Opt. Mater. 2021, 9, 2101052.

    Article  CAS  Google Scholar 

  39. Jeong, K.; Park, D.; Maeng, I.; Kim, D.; Kwon, H.; Kang, C.; Cho, M. H. Modulation of optoelectronic properties of the Bi2Te3 nanowire by controlling the formation of selective surface oxidation. Appl. Surf. Sci. 2021, 548, 149069.

    Article  CAS  Google Scholar 

  40. Concepción, O.; Galván-Arellano, M.; Torres-Costa, V.; Climent-Font, A.; Bahena, D.; Manso Silván, M.; Escobosa, A.; De Melo, O. Controlling the epitaxial growth of Bi2Te3, BiTe, and Bi4Te3 pure phases by physical vapor transport. Inorg. Chem. 2018, 57, 10090–10099.

    Article  PubMed  Google Scholar 

  41. Ngabonziza, P.; Stehno, M. P.; Myoren, H.; Neumann, V. A.; Koster, G.; Brinkman, A. Gate-tunable transport properties of in situ capped Bi2Te3 topological insulator thin films. Adv. Electron. Mater. 2016, 2, 1600157.

    Article  Google Scholar 

  42. Thomas, C. R.; Vallon, M. K.; Frith, M. G.; Sezen, H.; Kushwaha, S. K.; Cava, R. J.; Schwartz, J.; Bernasek, S. L. Surface oxidation of Bi2(Te, Se)3 topological insulators depends on cleavage accuracy. Chem. Mater. 2016, 28, 35–39.

    Article  CAS  Google Scholar 

  43. Huang, W. C.; Zhang, Y.; You, Q.; Huang, P.; Wang, Y. Z.; Huang, Z. N.; Ge, Y. Q.; Wu, L. M.; Dong, Z. J.; Dai, X. Y. et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small 2019, 15, 1900902.

    Article  Google Scholar 

  44. Smyth, C. M.; Zhou, G. Y.; Barton, A. T.; Wallace, R. M.; Hinkle, C. L. Controlling the Pd metal contact polarity to trigonal tellurium by atomic hydrogen-removal of the native tellurium oxide. Adv. Mater. Interfaces 2021, 8, 2002050.

    Article  CAS  Google Scholar 

  45. Pradhan, A.; Roy, A.; Tripathi, S.; Som, A.; Sarkar, D.; Mishra, J. K.; Roy, K.; Pradeep, T.; Ravishankar, N.; Ghosh, A. Ultra-high sensitivity infra-red detection and temperature effects in a graphene-tellurium nanowire binary hybrid. Nanoscale 2017, 9, 9284–9290.

    Article  CAS  PubMed  Google Scholar 

  46. Calavalle, F.; Suárez-Rodríguez, M.; Martín-García, B.; Johansson, A.; Vaz, D. C.; Yang, H. Z.; Maznichenko, I. V.; Ostanin, S.; Mateo-Alonso, A.; Chuvilin, A. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 2022, 21, 526–532.

    Article  CAS  PubMed  ADS  Google Scholar 

  47. Yao, J. D.; Zheng, Z. Q.; Yang, G. W. All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater. 2017, 27, 1701823.

    Article  Google Scholar 

  48. Wei, L. B.; Li, Y. R.; Tian, C. F.; Jiang, J. Recent progress in anisotropic 2D semiconductors: From material properties to photoelectric detection. Phys. Status Solidi Appl. Mater. Sci. 2021, 218, 2100204.

    Article  CAS  ADS  Google Scholar 

  49. Yan, Y. X.; Ran, W. H.; Li, Z. X.; Li, L. L.; Lou, Z.; Shen, G. Z. Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance. Nano Res. 2021, 14, 3379–3385.

    Article  CAS  ADS  Google Scholar 

  50. Li, L. L.; Zhao, S. F.; Ran, W. H.; Li, Z. X.; Yan, Y. X.; Zhong, B. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application. Nat. Commun. 2022, 13, 5975.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. You, S.; Zhang, L.; Yang, Q. Unconventionally anisotropic growth of PbSe nanorods: Controllable fabrication under solution-solid-solid regime over Ag2Se catalysis for broadband photodetection. Nano Res. 2021, 14, 3386–3394.

    Article  CAS  ADS  Google Scholar 

  52. Chakraborty, M.; Bhattacharyya, S. Air-annealed growth and characterization of Cd1-xZnxTe thin films grown from CdTe/ZnTe/CdTe multi-stacks. Vacuum 2018, 149, 156–167.

    Article  CAS  ADS  Google Scholar 

  53. Guo, S. Y.; Zhu, Z.; Hu, X. M.; Zhou, W. H.; Song, X. F., Zhang, S. L.; Zhang, K.; Zeng, H. B. Ultrathin tellurium dioxide: Emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale 2018, 10, 8397–8403.

    Article  CAS  PubMed  Google Scholar 

  54. An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Thai, K. Y.; Park, I.; Kim, B. J.; Hoang, A. T.; Na, Y.; Park, C. U.; Chae, Y.; Ahn, J. H. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 2021, 15, 12836–12846.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van Der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412.

    Article  Google Scholar 

  57. Tsai, T. H.; Liang, Z. Y.; Lin, Y. C.; Wang, C. C.; Lin, K. I.; Suenaga, K.; Chiu, P. W. Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano 2020, 14, 4559–4566.

    Article  CAS  PubMed  Google Scholar 

  58. Xiao, M. Q.; Yang, H.; Shen, W. F.; Hu, C. G.; Zhao, K.; Gao, Q.; Pan, L. F.; Liu, L. Y.; Wang, C. L.; Shen, G. Z. et al. Symmetry-reduction enhanced polarization-sensitive photodetection in core-shell SbI3/Sb2O3 van Der Waals heterostructure. Small 2020, 16, 1907172.

    Article  CAS  Google Scholar 

  59. Zhang, Y.; Zhang, F.; Wu, L. M.; Zhang, Y. P.; Huang, W. C.; Tang, Y. F.; Hu, L. P.; Huang, P.; Zhang, X. W.; Zhang, H. Van Der Waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 2019, 15, 1903233.

    Article  CAS  Google Scholar 

  60. Wang, Y. F.; Xia, J.; Li, X. Z.; Ru, F.; Chen, X.; Hua, Z.; Shao, R. W.; Wang, X. C.; Zhang, W. J.; Lee, C. S.; Meng, X. M. Vapor phase epitaxy of PbS single-crystal films on water-soluble substrates and application to photodetectors. Nano Res. 2022, 15, 5402–5409.

    Article  CAS  ADS  Google Scholar 

  61. Shang, H. M.; Chen, H. Y.; Dai, M. J.; Hu, Y. X.; Gao, F.; Yang, H. H.; Xu, B.; Zhang, S. C.; Tan, B. Y.; Zhang, X. et al. A mixed-dimensional 1D Se-2D InSe van der Waals heterojunction for high responsivity self-powered photodetectors. Nanoscale Horiz. 2020, 5, 564–572.

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res. 2019, 12, 669–674.

    Article  CAS  Google Scholar 

  63. Hong, S. B.; Kim, D. K.; Chae, J.; Kim, K.; Jeong, K.; Kim, J.; Park, H.; Park, H.; Yi, Y.; Cho, M. H. Enhanced photoinduced carrier generation efficiency through surface band bending in topological insulator Bi2Se3 thin films by the oxidized layer. ACS Appl. Mater. Interfaces 2020, 12, 26649–26658.

    Article  CAS  PubMed  Google Scholar 

  64. Li, D. W.; Zou, Q. M.; Huang, X.; Rabiee Golgir, H.; Keramatnejad, K.; Song, J. F.; Xiao, Z. Y.; Fan, L. S.; Hong, X.; Jiang, L. et al. Controlled defect creation and removal in graphene and MoS2 monolayers. Nanoscale 2017, 9, 8997–9008.

    Article  CAS  PubMed  Google Scholar 

  65. Xu, W. P.; Gan, L. Y.; Wang, R.; Wu, X. Z.; Xu, H. Surface adsorption and vacancy in tuning the properties of tellurene. ACS Appl. Mater. Interfaces 2020, 12, 19110–19115.

    Article  CAS  PubMed  Google Scholar 

  66. Chang, Y. Q.; Wang, P. W.; Ni, S. L.; Long, Y.; Li, X. D. Influence of Co content on raman and photoluminescence spectra of Co Doped ZnO nanowires. J. Mater. Sci. Technol. 2012, 28, 313–316.

    Article  CAS  Google Scholar 

  67. Dai, M. J.; Chen, H. Y.; Wang, F. K.; Long, M. S.; Shang, H. M.; Hu, Y. X.; Li, W.; Ge, C. Y.; Zhang, J.; Zhai, T. Y. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals Contacts. ACS Nano 2020, 14, 9098–9106.

    Article  CAS  PubMed  Google Scholar 

  68. Wu, F.; Xia, H.; Sun, H. D.; Zhang, J. W.; Gong, F.; Wang, Z.; Chen, L.; Wang, P.; Long, M. S.; Wu, X. et al. AsP/InSe Van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 2019, 29, 1900314.

    Article  Google Scholar 

  69. Tao, J. J.; Jiang, J. B.; Zhao, S. N.; Zhang, Y.; Li, X. X.; Fang, X. S.; Wang, P.; Hu, W. D.; Lee, Y. H.; Lu, H. L. et al. Fabrication of 1D Te/2D ReS2 mixed-dimensional van der waals p-n heterojunction for high-performance phototransistor. ACS Nano 2021, 15, 3241–3250.

    Article  CAS  PubMed  Google Scholar 

  70. Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Sacco, A. Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renew. Sustain. Energy Rev. 2017, 79, 814–829.

    Article  CAS  Google Scholar 

  72. Zhang, B. K.; Wang, D. B.; Jiao, S. J.; Xu, Z. K.; Liu, Y. X.; Zhao, C. C.; Pan, J. W.; Liu, D. H.; Liu, G.; Jiang, B. J. et al. TiO2-X mesoporous nanospheres/BiOI nanosheets S-scheme heterostructure for high efficiency, stable and unbiased photocatalytic hydrogen production. Chem. Eng. J. 2022, 446, 137138.

    Article  CAS  Google Scholar 

  73. Lu, L. L.; Li, R. J.; Fan, K.; Peng, T. Y. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol. Energy 2010, 84, 844–853.

    Article  CAS  ADS  Google Scholar 

  74. Ou, J. Z.; Rani, R. A.; Ham, M. H.; Field, M. R.; Zhang, Y.; Zheng, H. D.; Reece, P.; Zhuiykov, S.; Sriram, S.; Bhaskaran, M. et al. Elevated temperature anodized Nb2O5: A photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 2012, 6, 4045–4053.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, Y.; Xing, C. C.; Liu, Y.; Li, M. Y.; Xiao, K.; Guardia, P.; Lee, S.; Han, X.; Ostovari Moghaddam, A.; Josep Roa, J. et al. Influence of Copper telluride nanodomains on the transport properties of N-Type bismuth telluride. Chem. Eng. J. 2021, 418, 129374.

    Article  CAS  Google Scholar 

  76. Qu, D. X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 2010, 329, 821–824.

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2019YFA0705201), and the National Natural Science Foundation of China (No. U2032129).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongbo Wang, Jiamu Cao, Gang Liu, Xuan Fang or Jinzhong Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Wang, D., Cao, J. et al. Highly efficient 1D p-Te/2D n-Bi2Te3 heterojunction self-driven broadband photodetector. Nano Res. 17, 1864–1874 (2024). https://doi.org/10.1007/s12274-023-5905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5905-6

Keywords

Navigation