Skip to main content
Log in

Unconventionally anisotropic growth of PbSe nanorods: Controllable fabrication under solution-solid-solid regime over Ag2Se catalysis for broadband photodetection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Broadband optoelectronic devices intrigue enormous interests on account of their promising potential in optical communications, sensors and environmental monitoring. PbSe nanocrystals are promising candidates for the construction of next-generation photodetectors due to their fascinating intrinsic properties and solution-processed compatibility with varied substrates. Here, we report the fabrication of a broadband photodetector on the basis of high-quality solution-processed PbSe nanorods in rock-salt phase grown along unconventionally anisotropic growth direction of <112> zone axis. The rock-salt PbSe nanorods are synthesized in solution phase over the catalysis of Ag2Se with relatively high-temperature body-centered cubic phase via a solution-solid-solid growth regime using oleylamine and oleic acid as solvents and stabilizer surfactants, from which the PbSe nanorods with the unconventionally anisotropic growth direction are controllably grown in size and shape in the synthetic procedure typically with about 17 nm in diameter and 58 nm in length on average. Meanwhile, the PbSe nanorods-based photodetector exhibits a broadband response from 405 to 1,064 nm with a high responsivity of 0.78 A·W−1 and a fast response time of 17.5 µs. The response time is much faster in comparison with most of the PbSe-based photodetectors with response time in millisecond level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, I.; Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 1997, 14, 1632–1646.

    Article  CAS  Google Scholar 

  2. Du, H.; Chen, C.; Krishnan, R.; Krauss, T. D.; Harbold, J. M.; Wise, F. W.; Thomas, M. G.; Silcox, J. Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2002, 2, 1321–1324.

    Article  CAS  Google Scholar 

  3. Martinez, G.; Schluter, M.; Cohen, M. L. Electronic structure of PbSe and PbTe. I. Band structures, densities of states, and effective masses. Phys. Rev. B 1975, 11, 651–659.

    Article  CAS  Google Scholar 

  4. Pietryga, J. M.; Schaller, R. D.; Werder, D.; Stewart, M. H.; Klimov, V. I.; Hollingsworth, J. A. Pushing the band gap envelope: Mid-infrared emitting colloidal PbSe quantum dots. J. Am. Chem. Soc. 2004, 126, 11752–11753.

    Article  CAS  Google Scholar 

  5. Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS Nano 2008, 2, 833–840.

    Article  CAS  Google Scholar 

  6. Ahmad, W.; He, J. G.; Liu, Z. T.; Xu, K.; Chen, Z.; Yang, X. K.; Li, D. B.; Xia, Y.; Zhang, J. B.; Chen, C. Lead selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv. Mater. 2019, 31, 1900593.

    Article  CAS  Google Scholar 

  7. Wang, H.; Gibbs, Z. M.; Takagiwa, Y.; Snyder, G. J. Tuning bands of PbSe for better thermoelectric efficiency. Energy Environ. Sci. 2014, 7, 804–811.

    Article  CAS  Google Scholar 

  8. Androulakis, J.; Todorov, I.; He, J. Y.; Chung, D. Y.; Dravid, V.; Kanatzidis, M. Thermoelectrics from abundant chemical elements: High-performance nanostructured PbSe-PbS. J. Am. Chem. Soc. 2011, 133, 10920–10927.

    Article  CAS  Google Scholar 

  9. Xu, H. Z.; Zhao, F.; Majumdar, A.; Jayasinghe, L.; Shi, Z. High power mid-infrared optically pumped PbSe/PbSrSe multiple-quantum-well vertical-cavity surface-emitting laser operation at 325K. Electron. Lett. 2003, 39, 659–661.

    Article  CAS  Google Scholar 

  10. Jiang, Z. Y.; You, G. J; Wang, L.; Liu, J.; Hu, W. J.; Zhang, Y.; Xu, J. Solution-processed high-performance colloidal quantum dot tandem photodetectors on flexible substrates. J. Appl. Phys. 2014, 116, 084303.

    Article  CAS  Google Scholar 

  11. Sarasqueta, G.; Choudhury, K. R.; So, F. Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal infrared photodetectors. Chem. Mater. 2010, 22, 3496–3501.

    Article  CAS  Google Scholar 

  12. Li, C. G.; Bai, T. Y.; Li, F. F.; Wang, L.; Wu, X. F.; Yuan, L.; Shi, Z.; Feng, S. H. Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices. CrystEngComm 2013, 15, 597–603.

    Article  CAS  Google Scholar 

  13. Jiang, Z. Y.; Hu, W. J.; Mo, C.; Liu, Y.; Zhang, W. J.; You, G. J.; Wang, L.; Atalla, M. R. M.; Zhang, Y.; Liu, J. et al. Ultra-sensitive tandem colloidal quantum-dot photodetectors. Nanoscale 2015, 7, 16195–16199.

    Article  CAS  Google Scholar 

  14. Luo, P.; Zhuge, F. W.; Wang, F. K.; Lian, L. Y.; Liu, K. L.; Zhang, J. B.; Zhai, T. Y. PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 µm. ACS Nano 2019, 13, 9028–9037.

    Article  CAS  Google Scholar 

  15. Ren, Y. X.; Dai, T. J.; He, B.; Liu, X. Z. Improvement on performances of graphene-PbSe Schottky photodetector via oxygen-sensitization of PbSe. Mater. Lett. 2019, 236, 194–196.

    Article  CAS  Google Scholar 

  16. Zhu, T.; Yang, Y. R.; Zheng, L. Y.; Liu, L.; Becker, M. L.; Gong, X. Solution-processed flexible broadband photodetectors with solution-processed transparent polymeric electrode. Adv. Funct. Mater. 2020, 30, 1909487.

    Article  CAS  Google Scholar 

  17. Tang, H. D.; Zhong, J. L.; Chen, W.; Shi, K. M.; Mei, G. D.; Zhang, Y. N.; Wen, Z. L.; Müller-Buschbaum, P.; Wu, D.; Wang, K. et al. Lead sulfide quantum dot photodetector with enhanced responsivity through a two-step ligand-exchange method. ACS Appl. Nano Mater. 2019, 2, 6135–6143.

    Article  CAS  Google Scholar 

  18. Mishra, N.; Mukherjee, B.; Xing, G.; Chakrabortty, S.; Guchhait, A.; Lim, J. Y. Cation exchange synthesis of uniform PbSe/PbS core/shell tetra-pods and their use as near-infrared photodetectors. Nanoscale 2016, 8, 14203–14212.

    Article  CAS  Google Scholar 

  19. Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

    Article  CAS  Google Scholar 

  20. Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

    Article  CAS  Google Scholar 

  21. Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.

    Article  CAS  Google Scholar 

  22. Kim, D. K.; Lai, Y. M.; Vemulkar, T. R.; Kagan, C. R. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors. ACS Nano 2011, 5, 10074–10083.

    Article  CAS  Google Scholar 

  23. Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

    Article  CAS  Google Scholar 

  24. Wang, J. F.; Gudiksen, M. S.; Duan, X. F.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

    Article  CAS  Google Scholar 

  25. Choi, D.; Jang, Y.; Lee, J.; Jeong, G. H.; Whang, D.; Hwang, S. W.; Cho, K. S.; Kim, S. W. Diameter-controlled and surface-modified Sb2Se3 nanowires and their photodetector performance. Sci. Rep. 2014, 4, 6714.

    Article  CAS  Google Scholar 

  26. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  CAS  Google Scholar 

  27. Davis, N. J. L. K.; Böehm, M. L.; Tabachnyk, M.; Wisnivesky-Rocca-Rivarola, F.; Jellicoe, T. C.; Ducati, C.; Ehrler, B.; Greenham, N. C. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 2015, 6, 8259.

    Article  CAS  Google Scholar 

  28. Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.

    Article  CAS  Google Scholar 

  29. Al-mawlawi, D.; Liu, C. Z.; Moskovits, M. Nanowires formed in anodic oxide nanotemplates. J. Mater. Res. 1994, 9, 1014–1018.

    Article  CAS  Google Scholar 

  30. Han, W. Q.; Fan, S. S.; Li, Q. Q.; Hu, Y. D. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 1997, 277, 1287–1289.

    Article  CAS  Google Scholar 

  31. Li, Y. D.; Liao, H. W.; Ding, Y.; Qian, Y. T.; Yang, L.; Zhou, G. E. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 1998 10, 2301–2303.

    Article  CAS  Google Scholar 

  32. Yu, S. H.; Wu, Y. S.; Yang, J.; Han, Z. H.; Xie, Y.; Qian, Y. T.; Liu, X. M. A novel solventothermal synthetic route to nanocrystalline CdE (E = S, Se, Te) and morphological control. Chem. Mater. 1998, 10, 2309–2312.

    Article  CAS  Google Scholar 

  33. Peng, X. G; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

    Article  CAS  Google Scholar 

  34. Yu, S. H.; Yoshimura, M. Shape and phase control of ZnS nanocrystals: Template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS-(NH2CH2CH2NH2)0.5. Adv. Mater. 2002, 14, 296–300.

    Article  CAS  Google Scholar 

  35. Deng, Z. X.; Wang, C.; Sun, X. M.; Li, Y. D. Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg. Chem. 2002, 41, 869–873.

    Article  CAS  Google Scholar 

  36. Yang, J.; Xue, C.; Yu, S. H.; Zeng, J. H.; Qian, Y. T. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angew. Chem., Int. Ed. 2002, 41, 4697–4700.

    Article  CAS  Google Scholar 

  37. Yang, J.; Liu, Y. C.; Lin, H. M.; Chen, C. C. A chain-structure nanotube: Growth and characterization of single-crystal Sb2S3 nanotubes via a chemical vapor transport reaction. Adv. Mater. 2004, 16, 713–716.

    Article  CAS  Google Scholar 

  38. Zhan, J. H.; Yang, X. G.; Wang, D. W.; Li, S. D.; Xie, Y.; Xia, Y.; Qian, Y. Polymer-controlled growth of CdS nanowires. Adv. Mater. 2000, 12, 1348–1351.

    Article  CAS  Google Scholar 

  39. Penn, R. L.; Banfield, J. F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 281, 969–971.

    Article  CAS  Google Scholar 

  40. Yang, Q; Tang, K. B.; Wang, C. R.; Qian, Y. T; Zhang, S. Y. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires. J. Phys. Chem. B 2002, 106, 9227–9230.

    Article  CAS  Google Scholar 

  41. Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.

    Article  CAS  Google Scholar 

  42. Zhou, J.; Chen, G. H.; Nie, B.; Zuo, J.; Song, J.; Luo, L. B.; Yang, Q. Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire. CrystEngComm 2013, 15, 6863–6869.

    Article  CAS  Google Scholar 

  43. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

    Article  CAS  Google Scholar 

  44. Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

    Article  CAS  Google Scholar 

  45. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

    Article  CAS  Google Scholar 

  46. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473.

    Article  CAS  Google Scholar 

  47. Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

    Article  CAS  Google Scholar 

  48. Wang, D. W.; Dai, H. J. Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angew. Chem., Int. Ed. 2002, 41, 4783–4786.

    Article  CAS  Google Scholar 

  49. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth. Science 1995, 270, 1791–1794.

    Article  CAS  Google Scholar 

  50. Xie, Y.; Yan, P.; Lu, J.; Wang, W. Z.; Qian, Y. T. A safe low temperature route to InAs nanofibers. Chem. Mater. 1999, 11, 2619–2622.

    Article  CAS  Google Scholar 

  51. Qian, Y. Y.; Yang, Q. Straight indium antimonide nanowires with twinning superlattices via a solution route. Nano Lett. 2017, 17, 7183–7190.

    Article  CAS  Google Scholar 

  52. Wang, J. L.; Chen, K. M.; Gong, M.; Xu, B.; Yang, Q. Solution-solid-solid mechanism: Superionic conductors catalyze nanowire growth. Nano Lett. 2013, 13, 3996–4000.

    Article  CAS  Google Scholar 

  53. O’Sullivan, C.; Gunning, R. D.; Sanyal, A.; Barrett, C. A.; Geaney, H.; Laffir, F. R.; Ahmed, S.; Ryan, K. M. Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J. Am. Chem. Soc. 2009, 131, 12250–12257.

    Article  CAS  Google Scholar 

  54. Zhu, G. X.; Xu, Z. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. J. Am. Chem. Soc. 2011, 133, 148–157.

    Article  CAS  Google Scholar 

  55. Zhang, L.; Yang, Q. Kinetic growth of ultralong metastable zincblende MnSe nanowires catalyzed by a fast ionic conductor via a solution-solid-solid mechanism. Nano Lett. 2016, 16, 4008–4013.

    Article  CAS  Google Scholar 

  56. Zhang, L.; You, S.; Zuo, M.; Yang, Q. Solution synthesis of nonequilibrium zincblende MnS nanowires. Inorg. Chem. 2017, 56, 7679–7686.

    Article  CAS  Google Scholar 

  57. Chen, G. H.; Zhou, J.; Zuo, J.; Yang, Q. Organometallically anisotropic growth of ultralong Sb2Se3 nanowires with highly enhanced photothermal response. ACS Appl. Mater. Interfaces 2016, 8, 2819–2825.

    Article  CAS  Google Scholar 

  58. Yong, K. T.; Sahoo, Y.; Choudhury, K. R.; Swihart, M. T.; Minter, J. R.; Prasad, P. N. Shape control of PbSe nanocrystals using noble metal seed particles. Nano Lett. 2006, 6, 709–714.

    Article  CAS  Google Scholar 

  59. Kim, M. S.; Sung, Y. M. Enhanced formation of PbSe nanorods via combined solution-liquid-solid growth and oriented attachment. CrystEngComm 2012, 14, 1948–1953.

    Article  CAS  Google Scholar 

  60. Koh, W. K.; Yoon, Y.; Murray, C. B. Investigating the phosphine chemistry of Se precursors for the synthesis of PbSe nanorods. Chem. Mater. 2011, 23, 1825–1829.

    Article  CAS  Google Scholar 

  61. Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838–1846.

    Article  CAS  Google Scholar 

  62. Hoshino, S. Structure and dynamics of solid state ionics. Solid State Ionics 1991, 48, 179–201.

    Article  CAS  Google Scholar 

  63. Okabe, T.; Ura, K. High-resolution electron-microscopic studies of the polymorphs in AgδSe films. J. Appl. Cryst. 1994, 27, 140–145.

    Article  CAS  Google Scholar 

  64. Ferhat, M.; Nagao, J. Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 2000, 88, 813–816.

    Article  CAS  Google Scholar 

  65. Boolchand, P.; Bresser, W. J. Mobile silver ions and glass formation in solid electrolytes. Nature 2001, 410, 1070–1073.

    Article  CAS  Google Scholar 

  66. Shao, G. R.; Chen, G. H.; Yang, W. L.; Ding, T.; Zuo, J.; Yang, Q. Organometallic-route synthesis, controllable growth, mechanism investigation, and surface feature of PbSe nanostructures with tunable shapes. Langmuir 2014, 30, 2863–2872.

    Article  CAS  Google Scholar 

  67. Shao, G. R.; Chen, G. H.; Zuo, J.; Gong, M.; Yang, Q. Organometallic synthesis, structure determination, shape evolution, and formation mechanism of hexapod-like ternary PbSexS1−x nanostructures with tunable compositions. Langmuir 2014, 30, 7811–7822.

    Article  CAS  Google Scholar 

  68. Ge, J. P.; Xu, S.; Liu, L. P.; Li, Y. D. A positive-microemulsion method for preparing nearly uniform Ag2Se nanoparticles at low temperature. Chem.—Eur. J. 2006, 12, 3672–3677.

    Article  CAS  Google Scholar 

  69. Zhao, W. B.; Zhu, J. J.; Chen, H. Y. Photochemical preparation of rectangular PbSe and CdSe nanoparticles. J. Cryst. Growth 2003, 252, 587–592.

    Article  CAS  Google Scholar 

  70. Bhat, T. S.; Vanalakar, S. A.; Devan, R. S.; Mali, S. S.; Pawar, S. A.; Ma, Y. R.; Hong, C. K.; Kim, J. H.; Patil, P. S. Compact nanoarchitectures of lead selenide via successive ionic layer adsorption and reaction towards optoelectronic devices. J Mater. Sci. Mater. Electron. 2016, 27, 4996–5005.

    Article  CAS  Google Scholar 

  71. Kucur, E.; Riegler, J.; Urban, G. A.; Nann, T. Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J. Chem. Phys. 2003, 119, 2333–2337.

    Article  CAS  Google Scholar 

  72. Li, Y. C.; Zhong, H. Z.; Li, R.; Zhou, Y.; Yang, C. H.; Li, Y. F. High-yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1−x nanocrystals. Adv. Funct. Mater. 2006, 16, 1705–1716.

    Article  CAS  Google Scholar 

  73. Jiang, F.; Li, Y. C.; Ye, M. F.; Fan, L. Z.; Ding, Y. Q.; Li, Y. F. Ligand-tuned shape control, oriented assembly, and electrochemical characterization of colloidal ZnTe nanocrystals. Chem. Mater. 2010, 22, 4632–4641.

    Article  CAS  Google Scholar 

  74. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320, 1308.

    Article  CAS  Google Scholar 

  75. Yang, S. X.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J. B.; Li, S. S.; Li, J. B.; Wei, S. H. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226–7231.

    Article  CAS  Google Scholar 

  76. Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

    Article  CAS  Google Scholar 

  77. Chen, G. H.; Yu, Y. Q.; Zheng, K.; Ding, T.; Wang, W. L.; Jiang, Y.; Yang, Q. Fabrication of ultrathin Bi2S3 nanosheets for highperformance, flexible, visible-NIR photodetectors. Small 2015, 11, 2848–2855.

    Article  CAS  Google Scholar 

  78. Yu, Y. Q.; Li, Z.; Lu, Z. J.; Geng, X. S.; Lu, Y. C.; Xu, G. B.; Wang, L.; Jie, J. S. Graphene/MoS2/Si nanowires Schottky-NP bipolar van der Waals heterojunction for ultrafast photodetectors. IEEE Electron Device Lett. 2018, 39, 1688–1691.

    Article  CAS  Google Scholar 

  79. Li, Y.; Xu, C. Y.; Wang, J. Y.; Zhen, L. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures. Sci. Rep. 2014, 4, 7186.

    Article  CAS  Google Scholar 

  80. Geng, X. S.; Yu, Y. Q.; Zhou, X. L.; Wang, C. D.; Xu, K. W.; Zhang, Y.; Wu, C. Y. Wang, L.; Jiang, Y.; Yang, Q. Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 2016, 9, 2641–2651.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U1932150 and 21571166) and Anhui Provincial Natural Science Foundation (No. 1908085QB72).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yang.

Electronic Supplementary Material

12274_2021_3556_MOESM1_ESM.pdf

Unconventionally anisotropic growth of PbSe nanorods: Controllable fabrication under solution-solid-solid regime over Ag2Se catalysis for broadband photodetection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, S., Zhang, L. & Yang, Q. Unconventionally anisotropic growth of PbSe nanorods: Controllable fabrication under solution-solid-solid regime over Ag2Se catalysis for broadband photodetection. Nano Res. 14, 3386–3394 (2021). https://doi.org/10.1007/s12274-021-3556-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3556-z

Keywords

Navigation